Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumFramework
Tutorials
Getting Started
Guides
Wolfram Quantum Computation Framework
Tech Notes
Bell's Theorem
Circuit Diagram
Exploring Fundamentals of Quantum Theory
QPU Service Connection
Quantum object abstraction
Quantum Optimization
Second Quantization Functions
Tensor Network
Quantum Computation
Symbols
QuantumBasis
QuantumChannel
QuantumCircuitMultiwayGraph [EXPERIMENTAL]
QuantumCircuitOperator
QuantumDistance
QuantumEntangledQ
QuantumEntanglementMonotone
QuantumEvolve
QuantumMeasurement
QuantumMeasurementOperator
QuantumMeasurementSimulation
QuantumMPS [EXPERIMENTAL]
QuantumOperator
QuantumPartialTrace
QuantumPhaseSpaceTransform
QuantumShortcut [EXPERIMENTAL]
QuantumStateEstimate [EXPERIMENTAL]
QuantumState
QuantumTensorProduct
QuantumWignerMICTransform [EXPERIMENTAL]
QuantumWignerTransform [EXPERIMENTAL]
QuditBasis
QuditName
Getting Started
How to install and load the paclet
Install the paclet from the cloud:
I
n
[
1
]
:
=
P
a
c
l
e
t
I
n
s
t
a
l
l
[
"
h
t
t
p
s
:
/
/
w
o
l
f
r
.
a
m
/
D
e
v
W
Q
C
F
"
,
F
o
r
c
e
V
e
r
s
i
o
n
I
n
s
t
a
l
l
T
r
u
e
]
O
u
t
[
1
]
=
P
a
c
l
e
t
O
b
j
e
c
t
N
a
m
e
:
W
o
l
f
r
a
m
/
Q
u
a
n
t
u
m
F
r
a
m
e
w
o
r
k
V
e
r
s
i
o
n
:
1
.
0
.
2
2
Load the paclet:
I
n
[
2
]
:
=
<
<
W
o
l
f
r
a
m
`
Q
u
a
n
t
u
m
F
r
a
m
e
w
o
r
k
`
Check whether definitions are now available:
I
n
[
3
]
:
=
N
a
m
e
s
[
"
Q
u
a
n
t
u
m
*
"
]
O
u
t
[
3
]
=
{
Q
u
a
n
t
u
m
B
a
s
i
s
,
Q
u
a
n
t
u
m
C
h
a
n
n
e
l
,
Q
u
a
n
t
u
m
C
i
r
c
u
i
t
O
p
e
r
a
t
o
r
,
Q
u
a
n
t
u
m
D
i
s
t
a
n
c
e
,
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
d
Q
,
Q
u
a
n
t
u
m
E
n
t
a
n
g
l
e
m
e
n
t
M
o
n
o
t
o
n
e
,
Q
u
a
n
t
u
m
E
r
a
s
e
r
C
i
r
c
u
i
t
,
Q
u
a
n
t
u
m
M
e
a
s
u
r
e
m
e
n
t
,
Q
u
a
n
t
u
m
M
e
a
s
u
r
e
m
e
n
t
O
p
e
r
a
t
o
r
,
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
,
Q
u
a
n
t
u
m
P
a
r
t
i
a
l
T
r
a
c
e
,
Q
u
a
n
t
u
m
S
t
a
t
e
,
Q
u
a
n
t
u
m
T
e
n
s
o
r
P
r
o
d
u
c
t
,
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
}
A quantum gate for the magic basis transformation (transforming 2 qubit computational basis to the Bell basis):
I
n
[
4
]
:
=
q
c
=
Q
u
a
n
t
u
m
C
i
r
c
u
i
t
O
p
e
r
a
t
o
r
[
{
"
S
"
,
"
S
"
2
,
"
H
"
2
,
"
C
N
O
T
"
{
2
,
1
}
}
]
;
q
c
[
"
D
i
a
g
r
a
m
"
]
O
u
t
[
4
]
=
I
n
[
5
]
:
=
q
c
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
0
0
"
]
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
P
h
i
P
l
u
s
"
]
O
u
t
[
5
]
=
T
r
u
e
I
n
[
6
]
:
=
q
c
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
1
0
"
]
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
P
s
i
P
l
u
s
"
]
O
u
t
[
6
]
=
T
r
u
e
I
n
[
7
]
:
=
q
c
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
0
1
"
]
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
P
h
i
M
i
n
u
s
"
]
O
u
t
[
7
]
=
T
r
u
e
I
n
[
8
]
:
=
q
c
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
1
1
"
]
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
P
s
i
M
i
n
u
s
"
]
O
u
t
[
8
]
=
T
r
u
e
Decomposition of a general controlled-controlled-U gate using
V
=
S
q
r
t
[
U
]
:
I
n
[
9
]
:
=
u
=
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
[
"
H
"
,
{
3
}
]
;
q
c
=
Q
u
a
n
t
u
m
C
i
r
c
u
i
t
O
p
e
r
a
t
o
r
[
{
{
"
C
"
,
u
,
{
1
,
2
}
}
}
]
;
q
c
[
"
D
i
a
g
r
a
m
"
]
O
u
t
[
9
]
=
Define the quantum operator v as the square-root of u:
I
n
[
1
3
9
]
:
=
v
=
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
[
S
q
r
t
[
u
]
,
"
L
a
b
e
l
"
"
V
"
]
O
u
t
[
1
3
9
]
=
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
P
i
c
t
u
r
e
:
S
c
h
r
ö
d
i
n
g
e
r
A
r
i
t
y
:
1
D
i
m
e
n
s
i
o
n
:
2
→
2
Q
u
d
i
t
s
:
1
→
1
Construct the decomposition circuit:
I
n
[
1
4
0
]
:
=
d
e
c
o
m
p
=
Q
u
a
n
t
u
m
C
i
r
c
u
i
t
O
p
e
r
a
t
o
r
[
{
{
"
C
"
,
v
,
{
2
}
}
,
"
C
X
"
,
{
"
C
"
,
v
[
"
D
a
g
g
e
r
"
]
,
{
2
}
}
,
"
C
X
"
,
{
"
C
"
,
v
,
{
1
}
}
}
]
;
d
e
c
o
m
p
[
"
D
i
a
g
r
a
m
"
]
O
u
t
[
1
4
1
]
=
"
"