Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
W
e
i
g
h
t
S
y
s
t
e
m
W
e
i
g
h
t
S
y
s
t
e
m
[
i
r
r
e
p
]
c
o
n
s
t
r
u
c
t
s
t
h
e
w
e
i
g
h
t
s
y
s
t
e
m
o
f
i
r
r
e
p
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
4
)
Basic Examples
(
4
)
Weight system of the
8
of SU(3):
I
n
[
1
]
:
=
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
S
U
3
]
[
8
]
]
/
/
I
n
p
u
t
F
o
r
m
O
u
t
[
1
]
/
/
I
n
p
u
t
F
o
r
m
=
{Weight[A][1, 1], Weight[A][-1, 2], Weight[A][2, -1], Weight[A][0, 0], Weight[A][0, 0], Weight[A][-2, 1], Weight[A][1, -2], Weight[A][-1, -1]}
I
n
[
2
]
:
=
%
/
/
S
t
a
n
d
a
r
d
F
o
r
m
O
u
t
[
2
]
/
/
S
t
a
n
d
a
r
d
F
o
r
m
=
{
(
1
,
1
)
,
(
-
1
,
2
)
,
(
2
,
-
1
)
,
(
0
,
0
)
,
(
0
,
0
)
,
(
-
2
,
1
)
,
(
1
,
-
2
)
,
(
-
1
,
-
1
)
}
Textbook formatting of weights as boxes in
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
:
I
n
[
3
]
:
=
%
/
/
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
O
u
t
[
3
]
/
/
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
=
1
1
,
-
1
2
,
2
-
1
,
0
0
,
0
0
,
-
2
1
,
1
-
2
,
-
1
-
1
Spindle shape formatting with the option SpindleShape:
I
n
[
4
]
:
=
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
S
U
3
]
[
8
]
,
S
p
i
n
d
l
e
S
h
a
p
e
T
r
u
e
]
O
u
t
[
4
]
=
1
1
-
1
2
2
-
1
0
0
0
0
-
2
1
1
-
2
-
1
-
1
Weight system of the
10
of SU(5):
I
n
[
1
]
:
=
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
S
U
5
]
[
1
0
]
]
O
u
t
[
1
]
=
0
1
0
0
,
1
-
1
1
0
,
-
1
0
1
0
,
1
0
-
1
1
,
-
1
1
-
1
1
,
1
0
0
-
1
,
-
1
1
0
-
1
,
0
-
1
0
1
,
0
-
1
1
-
1
,
0
0
-
1
0
Weight levels for each weight:
I
n
[
2
]
:
=
T
a
b
l
e
F
o
r
m
[
{
#
,
W
e
i
g
h
t
L
e
v
e
l
[
#
,
I
r
r
e
p
[
S
U
5
]
[
1
0
]
]
}
&
/
@
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
S
U
5
]
[
1
0
]
]
,
T
a
b
l
e
H
e
a
d
i
n
g
s
{
N
o
n
e
,
{
"
W
e
i
g
h
t
"
,
"
L
e
v
e
l
"
}
}
,
T
a
b
l
e
A
l
i
g
n
m
e
n
t
s
C
e
n
t
e
r
]
O
u
t
[
2
]
/
/
T
a
b
l
e
F
o
r
m
=
W
e
i
g
h
t
L
e
v
e
l
0
1
0
0
0
1
-
1
1
0
1
-
1
0
1
0
2
1
0
-
1
1
2
-
1
1
-
1
1
3
1
0
0
-
1
3
-
1
1
0
-
1
4
0
-
1
0
1
4
0
-
1
1
-
1
5
0
0
-
1
0
6
I
n
[
3
]
:
=
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
S
U
5
]
[
1
0
]
,
S
p
i
n
d
l
e
S
h
a
p
e
T
r
u
e
]
O
u
t
[
3
]
=
0
1
0
0
1
-
1
1
0
-
1
0
1
0
1
0
-
1
1
-
1
1
-
1
1
1
0
0
-
1
-
1
1
0
-
1
0
-
1
0
1
0
-
1
1
-
1
0
0
-
1
0
Weight system of the
16
of SO(10):
I
n
[
1
]
:
=
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
D
]
[
0
,
0
,
0
,
0
,
1
]
,
S
p
i
n
d
l
e
S
h
a
p
e
T
r
u
e
]
O
u
t
[
1
]
=
0
0
0
0
1
0
0
1
0
-
1
0
1
-
1
1
0
0
1
0
-
1
0
1
-
1
0
1
0
-
1
0
0
1
0
1
-
1
1
-
1
0
-
1
0
1
-
1
0
1
0
-
1
0
1
-
1
1
-
1
0
1
1
0
0
0
-
1
-
1
1
0
0
-
1
0
-
1
0
0
1
0
-
1
1
0
-
1
0
0
-
1
1
0
0
0
0
-
1
0
I
n
[
1
]
:
=
W
e
i
g
h
t
S
y
s
t
e
m
[
I
r
r
e
p
[
E
6
]
[
2
7
]
,
S
p
i
n
d
l
e
S
h
a
p
e
T
r
u
e
]
O
u
t
[
1
]
=
1
0
0
0
0
0
-
1
1
0
0
0
0
0
-
1
1
0
0
0
0
0
-
1
1
0
1
0
0
0
-
1
1
1
0
0
0
1
0
-
1
0
0
0
0
-
1
1
0
0
1
-
1
1
-
1
0
0
1
0
-
1
-
1
0
1
-
1
0
1
0
0
1
-
1
1
-
1
0
1
-
1
0
0
1
0
-
1
0
0
0
1
0
0
1
0
-
1
0
0
1
-
1
0
1
-
1
0
-
1
0
0
1
-
1
0
1
-
1
1
-
1
0
0
-
1
0
1
-
1
0
0
1
0
-
1
0
0
1
-
1
1
-
1
0
0
1
1
0
0
0
0
-
1
-
1
1
0
0
0
-
1
0
-
1
0
0
0
1
0
-
1
1
0
0
-
1
0
0
-
1
1
0
0
0
0
0
-
1
1
0
0
0
0
0
-
1
0
S
e
e
A
l
s
o
R
o
o
t
S
y
s
t
e
m
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"