Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
a
l
g
e
b
r
a
]
g
i
v
e
s
t
h
e
s
i
m
p
l
e
r
o
o
t
s
o
f
a
l
g
e
b
r
a
i
n
t
h
e
o
r
t
h
o
g
o
n
a
l
b
a
s
i
s
.
Examples
(
2
)
Basic Examples
(
2
)
Simple roots of all rank 4 classical Lie algebras in the orthogonal basis:
I
n
[
1
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
A
4
]
O
u
t
[
1
]
=
{
(
1
,
-
1
,
0
,
0
,
0
)
,
(
0
,
1
,
-
1
,
0
,
0
)
,
(
0
,
0
,
1
,
-
1
,
0
)
,
(
0
,
0
,
0
,
1
,
-
1
)
}
I
n
[
2
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
B
4
]
O
u
t
[
2
]
=
{
(
1
,
-
1
,
0
,
0
)
,
(
0
,
1
,
-
1
,
0
)
,
(
0
,
0
,
1
,
-
1
)
,
(
0
,
0
,
0
,
1
)
}
I
n
[
3
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
C
4
]
O
u
t
[
3
]
=
{
(
1
,
-
1
,
0
,
0
)
,
(
0
,
1
,
-
1
,
0
)
,
(
0
,
0
,
1
,
-
1
)
,
(
0
,
0
,
0
,
2
)
}
I
n
[
4
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
D
4
]
O
u
t
[
4
]
=
{
(
1
,
-
1
,
0
,
0
)
,
(
0
,
1
,
-
1
,
0
)
,
(
0
,
0
,
1
,
-
1
)
,
(
0
,
0
,
1
,
1
)
}
Simple roots of all exceptional Lie algebras in the orthogonal basis:
I
n
[
1
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
E
6
]
O
u
t
[
1
]
=
{
(
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
1
/
2
)
,
(
-
1
,
1
,
0
,
0
,
0
,
0
,
0
,
0
)
,
(
0
,
-
1
,
1
,
0
,
0
,
0
,
0
,
0
)
,
(
0
,
0
,
-
1
,
1
,
0
,
0
,
0
,
0
)
,
(
0
,
0
,
0
,
-
1
,
1
,
0
,
0
,
0
)
,
(
1
,
1
,
0
,
0
,
0
,
0
,
0
,
0
)
}
I
n
[
2
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
E
7
]
O
u
t
[
2
]
=
{
(
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
1
/
2
)
,
(
-
1
,
1
,
0
,
0
,
0
,
0
,
0
,
0
)
,
(
0
,
-
1
,
1
,
0
,
0
,
0
,
0
,
0
)
,
(
0
,
0
,
-
1
,
1
,
0
,
0
,
0
,
0
)
,
(
0
,
0
,
0
,
-
1
,
1
,
0
,
0
,
0
)
,
(
0
,
0
,
0
,
0
,
-
1
,
1
,
0
,
0
)
,
(
1
,
1
,
0
,
0
,
0
,
0
,
0
,
0
)
}
I
n
[
3
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
E
8
]
O
u
t
[
3
]
=
{
(
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
1
/
2
)
,
(
-
1
,
1
,
0
,
0
,
0
,
0
,
0
,
0
)
,
(
0
,
-
1
,
1
,
0
,
0
,
0
,
0
,
0
)
,
(
0
,
0
,
-
1
,
1
,
0
,
0
,
0
,
0
)
,
(
0
,
0
,
0
,
-
1
,
1
,
0
,
0
,
0
)
,
(
0
,
0
,
0
,
0
,
-
1
,
1
,
0
,
0
)
,
(
0
,
0
,
0
,
0
,
0
,
-
1
,
1
,
0
)
,
(
1
,
1
,
0
,
0
,
0
,
0
,
0
,
0
)
}
I
n
[
4
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
F
4
]
O
u
t
[
4
]
=
{
(
1
,
-
1
,
0
,
0
)
,
(
0
,
1
,
-
1
,
0
)
,
(
0
,
0
,
1
,
0
)
,
(
-
1
/
2
,
-
1
/
2
,
-
1
/
2
,
-
1
/
2
)
}
I
n
[
5
]
:
=
O
r
t
h
o
g
o
n
a
l
S
i
m
p
l
e
R
o
o
t
s
[
G
2
]
O
u
t
[
5
]
=
{
(
1
,
-
1
,
0
)
,
(
-
2
,
1
,
1
)
}
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"