Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
M
e
t
r
i
c
T
e
n
s
o
r
M
e
t
r
i
c
T
e
n
s
o
r
[
a
l
g
e
b
r
a
]
g
i
v
e
s
t
h
e
m
e
t
r
i
c
t
e
n
s
o
r
o
f
a
l
g
e
b
r
a
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
2
)
Basic Examples
(
2
)
Metric tensors of all rank 4 classical Lie algebras:
I
n
[
1
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
A
4
]
O
u
t
[
1
]
=
4
5
3
5
2
5
1
5
3
5
6
5
4
5
2
5
2
5
4
5
6
5
3
5
1
5
2
5
3
5
4
5
I
n
[
2
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
B
4
]
O
u
t
[
2
]
=
1
1
1
1
2
1
2
2
1
1
2
3
3
2
1
2
1
3
2
1
I
n
[
3
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
C
4
]
O
u
t
[
3
]
=
1
2
1
2
1
2
1
2
1
2
1
1
1
1
2
1
3
2
3
2
1
2
1
3
2
2
I
n
[
4
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
D
4
]
O
u
t
[
4
]
=
1
1
1
2
1
2
1
2
1
1
1
2
1
1
1
2
1
2
1
1
2
1
Metric tensors of all exceptional Lie algebras :
I
n
[
1
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
E
6
]
O
u
t
[
1
]
=
4
3
5
3
2
4
3
2
3
1
5
3
1
0
3
4
8
3
4
3
2
2
4
6
4
2
3
4
3
8
3
4
1
0
3
5
3
2
2
3
4
3
2
5
3
4
3
1
1
2
3
2
1
2
I
n
[
2
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
E
7
]
O
u
t
[
2
]
=
2
3
4
3
2
1
2
3
6
8
6
4
2
4
4
8
1
2
9
6
3
6
3
6
9
1
5
2
5
5
2
9
2
2
4
6
5
4
2
3
1
2
3
5
2
2
3
2
3
2
2
4
6
9
2
3
3
2
7
2
I
n
[
3
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
E
8
]
O
u
t
[
3
]
=
4
7
1
0
8
6
4
2
5
7
1
4
2
0
1
6
1
2
8
4
1
0
1
0
2
0
3
0
2
4
1
8
1
2
6
1
5
8
1
6
2
4
2
0
1
5
1
0
5
1
2
6
1
2
1
8
1
5
1
2
8
4
9
4
8
1
2
1
0
8
6
3
6
2
4
6
5
4
3
2
3
5
1
0
1
5
1
2
9
6
3
8
I
n
[
4
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
F
4
]
O
u
t
[
4
]
=
2
3
2
1
3
6
4
2
2
4
3
3
2
1
2
3
2
1
I
n
[
5
]
:
=
M
e
t
r
i
c
T
e
n
s
o
r
[
G
2
]
O
u
t
[
5
]
=
2
3
1
1
2
S
e
e
A
l
s
o
C
a
r
t
a
n
M
a
t
r
i
x
▪
A
l
g
e
b
r
a
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"