Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
[
i
r
r
e
p
s
]
d
e
c
o
m
p
o
s
e
s
t
h
e
t
e
n
s
o
r
p
r
o
d
u
c
t
o
f
t
w
o
o
r
m
o
r
e
i
r
r
e
p
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
6
)
Basic Examples
(
4
)
Decompose the tensor product
3
⊗
8
of SU(3):
I
n
[
1
]
:
=
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
[
I
r
r
e
p
[
S
U
3
]
[
8
]
,
I
r
r
e
p
[
S
U
3
]
[
8
]
]
O
u
t
[
1
]
=
1
+
2
(
8
)
+
1
0
+
1
0
+
2
7
Internally a sum of irreps is represented by
I
r
r
e
p
P
l
u
s
and IrrepTimes, an analog of the built-in functions
P
l
u
s
and
T
i
m
e
s
:
I
n
[
2
]
:
=
%
/
/
I
n
p
u
t
F
o
r
m
O
u
t
[
2
]
/
/
I
n
p
u
t
F
o
r
m
=
IrrepPlus[Irrep[A][0, 0], IrrepTimes[2, Irrep[A][1, 1]], Irrep[A][3, 0], Irrep[A][0, 3], Irrep[A][2, 2]]
Decompose more than two irreps, e.g.
1
0
⊗
1
0
⊗
5
of SU(5):
I
n
[
1
]
:
=
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
[
I
r
r
e
p
[
S
U
5
]
[
1
0
]
,
I
r
r
e
p
[
S
U
5
]
[
1
0
]
,
I
r
r
e
p
[
S
U
5
]
[
5
]
]
O
u
t
[
1
]
=
1
+
2
(
2
4
)
+
2
(
7
5
)
+
1
2
6
+
′
1
7
5
Decomposition of
2
7
⊗
2
7
of
E
6
:
I
n
[
1
]
:
=
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
[
I
r
r
e
p
[
E
6
]
[
2
7
]
,
I
r
r
e
p
[
E
6
]
[
B
a
r
[
2
7
]
]
]
O
u
t
[
1
]
=
1
+
7
8
+
6
5
0
Displaying the results with Dynkin labels:
I
n
[
2
]
:
=
%
/
/
S
t
a
n
d
a
r
d
F
o
r
m
O
u
t
[
2
]
/
/
S
t
a
n
d
a
r
d
F
o
r
m
=
(
0
0
0
0
0
0
)
+
(
0
0
0
0
0
1
)
+
(
1
0
0
0
1
0
)
Decomposition of irreps of product algebras, e.g. for SU(3)
⊗
SU(2): the decomposition of
(
3
,
2
)
⊗
(
3
,
1
)
⊗
(
1
,
2
)
:
I
n
[
1
]
:
=
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
[
P
r
o
d
u
c
t
I
r
r
e
p
[
I
r
r
e
p
[
S
U
3
]
[
B
a
r
[
3
]
]
,
I
r
r
e
p
[
S
U
2
]
[
2
]
]
,
P
r
o
d
u
c
t
I
r
r
e
p
[
I
r
r
e
p
[
S
U
3
]
[
3
]
,
I
r
r
e
p
[
S
U
2
]
[
1
]
]
,
P
r
o
d
u
c
t
I
r
r
e
p
[
I
r
r
e
p
[
S
U
3
]
[
1
]
,
I
r
r
e
p
[
S
U
2
]
[
2
]
]
]
O
u
t
[
1
]
=
(
1
,
1
)
+
(
1
,
3
)
+
(
8
,
1
)
+
(
8
,
3
)
Y
u
k
a
w
a
I
n
t
e
r
a
c
t
i
o
n
i
n
(
1
)
Y
u
k
a
w
a
I
n
t
e
r
a
c
t
i
o
n
i
n
M
i
n
i
m
a
l
F
l
a
v
o
r
V
i
o
l
a
t
i
o
n
(
1
)
S
e
e
A
l
s
o
I
r
r
e
p
▪
D
e
c
o
m
p
o
s
e
I
r
r
e
p
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"