Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
A
l
g
e
b
r
a
A
l
g
e
b
r
a
[
a
l
g
e
b
r
a
C
l
a
s
s
]
[
n
]
r
e
p
r
e
s
e
n
t
s
a
c
l
a
s
s
i
c
a
l
a
l
g
e
b
r
a
o
f
t
h
e
t
y
p
e
a
l
g
e
b
r
a
C
l
a
s
s
,
w
h
i
c
h
c
a
n
o
n
l
y
b
e
A
,
B
,
C
o
r
D
,
w
i
t
h
r
a
n
k
n
.
A
l
g
e
b
r
a
[
e
x
p
r
]
g
i
v
e
s
t
h
e
a
l
g
e
b
r
a
(
c
l
a
s
s
i
c
a
l
o
r
e
x
c
e
p
t
i
o
n
a
l
)
o
f
e
x
p
r
,
w
h
i
c
h
m
a
y
b
e
a
n
i
r
r
e
p
,
a
w
e
i
g
h
t
o
r
a
r
o
o
t
i
n
a
n
y
b
a
s
i
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Classical Lie algebras can be entered in three different ways, which all evaluate to their unique internal representation: by the traditional name, by their Dynkin classification or by the internal representation:
I
n
[
1
]
:
=
{
S
U
5
,
A
4
,
A
l
g
e
b
r
a
[
A
]
[
4
]
}
/
/
I
n
p
u
t
F
o
r
m
O
u
t
[
1
]
/
/
I
n
p
u
t
F
o
r
m
=
{Algebra[A][4], Algebra[A][4], Algebra[A][4]}
The traditional name is displayed in
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
:
I
n
[
2
]
:
=
B
4
/
/
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
O
u
t
[
2
]
/
/
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
=
S
O
(
9
)
The Dynkin classification is displayed in
S
t
a
n
d
a
r
d
F
o
r
m
:
I
n
[
3
]
:
=
S
O
1
0
/
/
S
t
a
n
d
a
r
d
F
o
r
m
O
u
t
[
3
]
/
/
S
t
a
n
d
a
r
d
F
o
r
m
=
D
5
The input and internal representation of exceptional algebras is the same and the display forms are nearly the same:
I
n
[
4
]
:
=
{
I
n
p
u
t
F
o
r
m
[
#
]
,
S
t
a
n
d
a
r
d
F
o
r
m
[
#
]
,
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
[
#
]
}
&
@
{
E
6
,
E
7
,
E
8
,
F
4
,
G
2
}
O
u
t
[
4
]
=
{
{
E
6
,
E
7
,
E
8
,
F
4
,
G
2
}
,
{
E
6
,
E
7
,
E
8
,
F
4
,
G
2
}
,
{
E
6
,
E
7
,
E
8
,
F
4
,
G
2
}
}
Determining the algebra of irreps, weights or roots:
I
n
[
5
]
:
=
A
l
g
e
b
r
a
[
I
r
r
e
p
[
A
]
[
0
,
1
,
0
,
0
]
]
O
u
t
[
5
]
=
S
U
(
5
)
I
n
[
6
]
:
=
A
l
g
e
b
r
a
[
W
e
i
g
h
t
[
A
]
[
0
,
2
,
0
,
-
1
]
]
O
u
t
[
6
]
=
S
U
(
5
)
I
n
[
7
]
:
=
A
l
g
e
b
r
a
[
R
o
o
t
O
m
e
g
a
[
B
]
[
2
,
-
1
,
0
,
0
]
]
O
u
t
[
7
]
=
S
O
(
9
)
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"