Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
Properties of Irreducible Representations
following R. Slansky,
“Group Theory for Unified Model Building”
, Phys.Rept.
79
(1981) 1 - 128
I
n
i
t
i
a
l
i
z
a
t
i
o
n
SU(N)
I
n
[
]
:
=
I
r
r
e
p
P
r
o
p
e
r
t
i
e
s
T
a
b
l
e
[
S
U
2
,
{
}
,
C
o
n
g
r
u
e
n
c
y
C
l
a
s
s
N
a
m
e
-
>
"
D
u
a
l
i
t
y
"
,
M
a
x
D
i
m
-
>
4
7
,
M
a
x
D
y
n
k
i
n
D
i
g
i
t
-
>
4
6
]
N
u
m
b
e
r
o
f
i
r
r
e
p
s
:
4
6
T
o
t
a
l
t
i
m
e
:
0
.
0
s
O
u
t
[
]
=
T
a
b
l
e
1
:
S
U
(
2
)
I
r
r
e
p
s
D
y
n
k
i
n
l
a
b
e
l
D
i
m
e
n
s
i
o
n
(
n
a
m
e
)
l
(
i
n
d
e
x
)
D
u
a
l
i
t
y
(
1
)
2
1
1
(
2
)
3
4
0
(
3
)
4
1
0
1
(
4
)
5
2
0
0
(
5
)
6
3
5
1
(
6
)
7
5
6
0
(
7
)
8
8
4
1
(
8
)
9
1
2
0
0
(
9
)
1
0
1
6
5
1
(
1
0
)
1
1
2
2
0
0
(
1
1
)
1
2
2
8
6
1
(
1
2
)
1
3
3
6
4
0
(
1
3
)
1
4
4
5
5
1
(
1
4
)
1
5
5
6
0
0
(
1
5
)
1
6
6
8
0
1
(
1
6
)
1
7
8
1
6
0
(
1
7
)
1
8
9
6
9
1
(
1
8
)
1
9
1
1
4
0
0
(
1
9
)
2
0
1
3
3
0
1
(
2
0
)
2
1
1
5
4
0
0
(
2
1
)
2
2
1
7
7
1
1
(
2
2
)
2
3
2
0
2
4
0
(
2
3
)
2
4
2
3
0
0
1
(
2
4
)
2
5
2
6
0
0
0
(
2
5
)
2
6
2
9
2
5
1
(
2
6
)
2
7
3
2
7
6
0
(
2
7
)
2
8
3
6
5
4
1
(
2
8
)
2
9
4
0
6
0
0
(
2
9
)
3
0
4
4
9
5
1
(
3
0
)
3
1
4
9
6
0
0
(
3
1
)
3
2
5
4
5
6
1
(
3
2
)
3
3
5
9
8
4
0
(
3
3
)
3
4
6
5
4
5
1
(
3
4
)
3
5
7
1
4
0
0
(
3
5
)
3
6
7
7
7
0
1
(
3
6
)
3
7
8
4
3
6
0
(
3
7
)
3
8
9
1
3
9
1
(
3
8
)
3
9
9
8
8
0
0
(
3
9
)
4
0
1
0
6
6
0
1
(
4
0
)
4
1
1
1
4
8
0
0
(
4
1
)
4
2
1
2
3
4
1
1
(
4
2
)
4
3
1
3
2
4
4
0
(
4
3
)
4
4
1
4
1
9
0
1
(
4
4
)
4
5
1
5
1
8
0
0
(
4
5
)
4
6
1
6
2
1
5
1
(
4
6
)
4
7
1
7
2
9
6
0
I
n
[
]
:
=
I
r
r
e
p
P
r
o
p
e
r
t
i
e
s
T
a
b
l
e
[
S
U
3
,
{
P
r
o
d
u
c
t
A
l
g
e
b
r
a
[
S
U
2
,
U
1
]
}
,
C
o
n
g
r
u
e
n
c
y
C
l
a
s
s
N
a
m
e
-
>
"
T
r
i
a
l
i
t
y
"
,
M
a
x
D
i
m
-
>
5
2
0
,
M
a
x
D
y
n
k
i
n
D
i
g
i
t
-
>
3
1
]
N
u
m
b
e
r
o
f
i
r
r
e
p
s
:
9
3
T
o
t
a
l
t
i
m
e
:
2
1
.
9
s
O
u
t
[
]
=
T
a
b
l
e
2
:
S
U
(
3
)
I
r
r
e
p
s
D
y
n
k
i
n
l
a
b
e
l
D
i
m
e
n
s
i
o
n
(
n
a
m
e
)
l
(
i
n
d
e
x
)
T
r
i
a
l
i
t
y
S
U
(
2
)
s
i
n
g
l
e
t
s
(
1
0
)
3
1
1
1
(
2
0
)
6
5
2
1
(
1
1
)
8
6
0
✶
1
(
3
0
)
1
0
1
5
0
1
(
2
1
)
1
5
2
0
1
1
(
4
0
)
1
5
′
3
5
1
1
(
0
5
)
2
1
7
0
1
1
(
1
3
)
2
4
5
0
1
1
(
2
2
)
2
7
5
4
0
✶
1
(
6
0
)
2
8
1
2
6
0
1
(
4
1
)
3
5
1
0
5
0
1
(
7
0
)
3
6
2
1
0
1
1
(
3
2
)
4
2
1
1
9
1
1
(
0
8
)
4
5
3
3
0
1
1
(
5
1
)
4
8
1
9
6
1
1
(
9
0
)
5
5
4
9
5
0
1
(
2
4
)
6
0
2
3
0
1
1
(
1
6
)
6
3
3
3
6
1
1
(
3
3
)
6
4
2
4
0
0
✶
1
(
1
0
,
0
)
6
6
7
1
5
1
1
(
0
,
1
1
)
7
8
1
0
0
1
1
1
(
7
1
)
8
0
5
4
0
0
1
(
5
2
)
8
1
4
0
5
0
1
(
4
3
)
9
0
4
3
5
1
1
(
1
2
,
0
)
9
1
1
3
6
5
0
1
(
8
1
)
9
9
8
2
5
1
1
(
6
2
)
1
0
5
6
6
5
1
1
(
1
3
,
0
)
1
0
5
′
1
8
2
0
1
1
(
3
5
)
1
2
0
7
3
0
1
1
(
1
9
)
1
2
0
′
1
2
1
0
1
1
(
0
,
1
4
)
1
2
0
′
′
2
3
8
0
1
1
(
4
4
)
1
2
5
7
5
0
0
✶
1
(
2
7
)
1
3
2
1
0
3
4
1
1
(
1
5
,
0
)
1
3
6
3
0
6
0
0
1
(
1
0
,
1
)
1
4
3
1
7
1
6
0
1
(
1
6
,
0
)
1
5
3
3
8
7
6
1
1
(
6
3
)
1
5
4
1
1
5
5
0
1
(
8
2
)
1
6
2
1
5
3
9
0
1
(
5
4
)
1
6
5
1
2
1
0
1
1
(
1
1
,
1
)
1
6
8
2
3
6
6
1
1
(
0
,
1
7
)
1
7
1
4
8
4
5
1
1
(
1
8
,
0
)
1
9
0
5
9
8
5
0
1
(
7
3
)
1
9
2
1
7
4
4
1
1
(
9
2
)
1
9
5
2
2
1
0
1
1
(
1
,
1
2
)
1
9
5
′
3
1
8
5
1
1
(
4
6
)
2
1
0
1
8
5
5
1
1
(
1
9
,
0
)
2
1
0
′
7
3
1
5
1
1
(
5
5
)
2
1
6
1
8
9
0
0
✶
1
(
1
3
,
1
)
2
2
4
4
2
0
0
0
1
(
2
,
1
0
)
2
3
1
3
0
8
0
1
1
(
0
,
2
0
)
2
3
1
′
8
8
5
5
1
1
(
3
8
)
2
3
4
2
5
3
5
1
1
(
2
1
,
0
)
2
5
3
1
0
6
2
6
0
1
(
1
4
,
1
)
2
5
5
5
4
4
0
1
1
(
7
4
)
2
6
0
2
7
3
0
0
1
(
1
1
,
2
)
2
7
0
4
1
8
5
0
1
(
6
5
)
2
7
3
2
8
2
1
1
1
(
2
2
,
0
)
2
7
6
1
2
6
5
0
1
1
(
9
3
)
2
8
0
3
5
7
0
0
1
(
1
,
1
5
)
2
8
8
6
9
3
6
1
1
(
0
,
2
3
)
3
0
0
1
4
9
5
0
1
1
(
1
2
,
2
)
3
1
2
5
5
6
4
1
1
(
8
4
)
3
1
5
3
8
8
5
1
1
(
1
6
,
1
)
3
2
3
8
7
2
1
0
1
(
2
4
,
0
)
3
2
5
1
7
5
5
0
0
1
(
1
0
,
3
)
3
3
0
4
8
9
5
1
1
(
5
7
)
3
3
6
4
0
6
0
1
1
(
6
6
)
3
4
3
4
1
1
6
0
✶
1
(
2
5
,
0
)
3
5
1
2
0
4
7
5
1
1
(
2
,
1
3
)
3
5
7
7
2
5
9
1
1
(
1
7
,
1
)
3
6
0
1
0
8
3
0
1
1
(
4
9
)
3
7
5
5
3
7
5
1
1
(
0
,
2
6
)
3
7
8
2
3
7
5
1
1
1
(
3
,
1
1
)
3
8
4
6
5
6
0
1
1
(
1
,
1
8
)
3
9
9
1
3
3
0
0
1
1
(
8
5
)
4
0
5
5
6
7
0
0
1
(
1
4
,
2
)
4
0
5
′
9
3
1
5
0
1
(
2
7
,
0
)
4
0
6
2
7
4
0
5
0
1
(
7
6
)
4
2
0
5
8
1
0
1
1
(
2
8
,
0
)
4
3
5
3
1
4
6
5
1
1
(
1
0
,
4
)
4
4
0
7
2
6
0
0
1
(
1
9
,
1
)
4
4
0
′
1
6
1
7
0
0
1
(
1
2
,
3
)
4
4
2
8
6
1
9
0
1
(
1
5
,
2
)
4
5
6
1
1
7
8
0
1
1
(
0
,
2
9
)
4
6
5
3
5
9
6
0
1
1
(
9
5
)
4
8
0
7
7
2
0
1
1
(
2
0
,
1
)
4
8
3
1
9
4
8
1
1
1
(
3
0
,
0
)
4
9
6
4
0
9
2
0
0
1
(
6
8
)
5
0
4
7
9
8
0
1
1
(
1
3
,
3
)
5
0
4
′
1
1
1
3
0
1
1
(
1
1
,
4
)
5
1
0
9
6
0
5
1
1
(
2
,
1
6
)
5
1
0
′
1
4
7
0
5
1
1
(
7
7
)
5
1
2
8
0
6
4
0
✶
1
✶
S
U
(
2
)
×
U
(
1
)
s
i
n
g
l
e
t
.
SO(N)
Sp(N)
Exceptional Algebras