Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LieART
Guides
LieART: Lie Algebras and Representation Theory
Tech Notes
LieART - Quick Start Tutorial
Symbols
Algebra
CartanMatrix
DecomposeIrrep
DecomposeProduct
DimName
Dim
HighestRoot
Index
Irrep
IrrepPlus
LaTeXForm
MetricTensor
OrthogonalSimpleRoots
PositiveRoots
ProductAlgebra
ProductIrrep
RootSystem
WeightSystem
YoungTableau
Other
BranchingRules
IrrepProperties
TensorProducts
LieART`
D
e
c
o
m
p
o
s
e
I
r
r
e
p
D
e
c
o
m
p
o
s
e
I
r
r
e
p
[
i
r
r
e
p
,
s
u
b
a
l
g
e
b
r
a
]
d
e
c
o
m
p
o
s
e
s
i
r
r
e
p
t
o
t
h
e
s
p
e
c
i
f
i
e
d
s
u
b
a
l
g
e
b
r
a
.
D
e
c
o
m
p
o
s
e
I
r
r
e
p
[
p
i
r
r
e
p
,
s
u
b
a
l
g
e
b
r
a
,
p
o
s
]
d
e
c
o
m
p
o
s
e
s
i
r
r
e
p
a
t
p
o
s
i
t
i
o
n
p
o
s
o
f
t
h
e
p
r
o
d
u
c
t
i
r
r
e
p
p
i
r
r
e
p
.
Examples
(
3
)
Basic Examples
(
2
)
Decompose the
1
0
of SU(5) to SU(3)
⊗
SU(2)
⊗
U(1):
I
n
[
1
]
:
=
D
e
c
o
m
p
o
s
e
I
r
r
e
p
[
I
r
r
e
p
[
S
U
5
]
[
B
a
r
[
1
0
]
]
,
P
r
o
d
u
c
t
A
l
g
e
b
r
a
[
S
U
3
,
S
U
2
,
U
1
]
]
O
u
t
[
1
]
=
(
1
,
1
)
(
6
)
+
(
3
,
1
)
(
-
4
)
+
(
3
,
2
)
(
1
)
Decompose
1
0
and
5
and of SU(5) to SU(3)
⊗
SU(2)
⊗
U(1) (
D
e
c
o
m
p
o
s
e
I
r
r
e
p
is
L
i
s
t
a
b
l
e
):
I
n
[
2
]
:
=
D
e
c
o
m
p
o
s
e
I
r
r
e
p
[
{
I
r
r
e
p
[
S
U
5
]
[
1
0
]
,
I
r
r
e
p
[
S
U
5
]
[
B
a
r
[
5
]
]
}
,
P
r
o
d
u
c
t
A
l
g
e
b
r
a
[
S
U
3
,
S
U
2
,
U
1
]
]
O
u
t
[
2
]
=
{
(
3
,
1
)
(
4
)
+
(
3
,
2
)
(
-
1
)
+
(
1
,
1
)
(
-
6
)
,
(
3
,
1
)
(
-
2
)
+
(
1
,
2
)
(
3
)
}
Decompose the SU(3) irrep
3
of (
24
,
3
)(-3) of SU(5)
⊗
SU(3)
⊗
U(1) to SU(2)
⊗
U'(1), i.e. SU(5)
⊗
SU(3)
⊗
U(1)
SU(5)
⊗
SU(2)
⊗
U'(1)
⊗
U(1):
I
n
[
1
]
:
=
D
e
c
o
m
p
o
s
e
I
r
r
e
p
[
P
r
o
d
u
c
t
I
r
r
e
p
[
I
r
r
e
p
[
S
U
5
]
[
2
4
]
,
I
r
r
e
p
[
S
U
3
]
[
3
]
,
I
r
r
e
p
[
U
1
]
[
-
3
]
]
,
P
r
o
d
u
c
t
A
l
g
e
b
r
a
[
S
U
2
,
U
1
]
,
2
]
O
u
t
[
1
]
=
(
2
4
,
1
)
(
-
2
)
(
-
3
)
+
(
2
4
,
2
)
(
1
)
(
-
3
)
The same decomposition as above displayed as branching rule:
I
n
[
2
]
:
=
R
u
l
e
[
#
,
D
e
c
o
m
p
o
s
e
I
r
r
e
p
[
#
,
P
r
o
d
u
c
t
A
l
g
e
b
r
a
[
S
U
2
,
U
1
]
,
2
]
]
&
@
P
r
o
d
u
c
t
I
r
r
e
p
[
I
r
r
e
p
[
S
U
5
]
[
2
4
]
,
I
r
r
e
p
[
S
U
3
]
[
3
]
,
I
r
r
e
p
[
U
1
]
[
-
3
]
]
O
u
t
[
2
]
=
(
2
4
,
3
)
(
-
3
)
(
2
4
,
2
)
(
1
)
(
-
3
)
+
(
2
4
,
1
)
(
-
2
)
(
-
3
)
A
p
p
l
i
c
a
t
i
o
n
s
(
1
)
S
e
e
A
l
s
o
I
r
r
e
p
▪
P
r
o
d
u
c
t
A
l
g
e
b
r
a
▪
I
r
r
e
p
P
l
u
s
▪
D
e
c
o
m
p
o
s
e
P
r
o
d
u
c
t
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
L
i
e
A
R
T
:
L
i
e
A
l
g
e
b
r
a
s
a
n
d
R
e
p
r
e
s
e
n
t
a
t
i
o
n
T
h
e
o
r
y
"
"