Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Warning: This resource is provisional
Function Repository Resource:
Compute a variety of integral transforms on input expressions
ResourceFunction["GenericIntegralTransform"][f,z,t,transform] gives the integral transform 𝒯transform[f(z)](t) of the input function f(z), in terms of new variable t. | |
ResourceFunction["GenericIntegralTransform"][] prints a table of all available transforms and their definitions. | |
ResourceFunction["GenericIntegralTransform"][patt] prints a table of available transforms whose names match the string pattern patt. | |
ResourceFunction["GenericIntegralTransform"][…, form] prints a table of transforms with definitions displayed in the specified form. |
GenerateConditions | False | whether to provide conditions under which the given result is valid |
"FoxHForm" | False | whether to provide results (where possible) in terms of the FoxH function |
Fourier transform | "Fourier" | "FourierExp" | |
Fourier cosine transform | "FourierCos" | |
Fourier sine transform | "FourierSin" | |
G-transform | ||
Hankel transform | {"Hankel",ν} | |
Hankel transform with Power | {"Hankel",ν,α} | |
Hartley tranform | "Hartley" | |
Hilbert transform | "Hilbert" | |
Hilbert transform with Power | {"Hilbert",α} | |
Integrate transform | "Integrate" | |
Integrate transform with Power | {"Integrate",α} | |
Laplace transform | "Laplace" | |
Laplace transform with Power | {"Laplace",α} | l |
Fourier transform"Fourier" | "FourierExp"Fourier cosine transform"FourierCos"Fourier sine transform"FourierSin"G-transformHankel transform{"Hankel",ν}Hankel transform with Power{"Hankel",ν,α}Hartley tranform"Hartley"Hilbert transform"Hilbert"Hilbert transform with Power{"Hilbert",α}Integrate transform"Integrate"Integrate transform with Power{"Integrate",α}Laplace transform"Laplace"Laplace transform with Power{"Laplace",α}l"LaplaceTwoSided"Mellin transform"Mellin"Mellin transform with Power{"Mellin",α}Neumann transform{"Neumann”, ν}Neumann transform with Power{"Neumann”, ν,α}Riesz transform{"Riesz”, α} with Re[α]>0Stieltjes transform{"Stieltjes”, ρ}Struve transform{“Struve”, ν}Struve transform with Power{"Struve”, ν,α}Weyl transform{“Weyl”, α} | "LaplaceTwoSided" | |
Mellin transform | "Mellin" | |
Mellin transform with Power | {"Mellin",α} | |
Neumann transform | {"Neumann”, ν} | |
Neumann transform with Power | {"Neumann”, ν,α} | |
Riesz transform | {"Riesz”, α} | with Re[α]>0 |
Stieltjes transform | {"Stieltjes”, ρ} | |
Struve transform | {“Struve”, ν} | |
Struve transform with Power | {"Struve”, ν,α} | |
Weyl transform | {“Weyl”, α} |
Compute the Mellin transform of a Bessel function:
In[1]:= |
Out[1]= |
Compute the Mellin transform of an exponential function:
In[2]:= |
Out[2]= |
Get the conditions of convergence for when the result above is valid:
In[3]:= |
Out[3]= |
Generically, the result returned is a ConditionalExpression. The conditions under which this result holds can be expanded by clicking the “+“, followed by “Uniconize”, or simply by examining the InputForm:
In[4]:= |
Out[4]= |
In[5]:= |
Compute the Laplace transform of a cosine. By default, GenericIntegralTransform gives results in terms of an Inactive MeijerG function:
In[6]:= |
Out[6]= |
Use Activate to allow the Inactive[MeijerG] to evaluate to elementary functions:
In[7]:= |
Out[7]= |
Compute the Hankel transform of an arctangent:
In[8]:= |
Out[8]= |
To evaluate in terms of simpler functions, use Activate and FunctionExpand:
In[9]:= |
Out[9]= |
Some results are available in terms of the FoxH function. To return this form where possible, use the "FoxHForm" option:
In[10]:= |
Out[10]= |
Get a table of all available transforms, with definitions in TraditionalForm:
In[11]:= |
List all transforms starting with the character "H", with definitions given in InputForm:
In[12]:= |
Compute the G-transform of a sine:
In[13]:= |
Out[13]= |
Get the result in terms of FoxH:
In[14]:= |
Out[14]= |
Compute the Hankel transform of a sine:
In[15]:= |
Out[15]= |
Get the result in terms of FoxH:
In[16]:= |
Out[16]= |
Compute the Hilbert transform of a sine:
In[17]:= |
Out[17]= |
Get the result in terms of FoxH:
In[18]:= |
Out[18]= |
Compute the "Integrate transform" of a sine:
In[19]:= |
Out[19]= |
Get the result in terms of FoxH:
In[20]:= |
Out[20]= |
Compute the Laplace transform of a sine:
In[21]:= |
Out[21]= |
Get the result in terms of FoxH:
In[22]:= |
Out[22]= |
Compute the Liousville transform of a sine:
In[23]:= |
Out[23]= |
Get the result in terms of FoxH:
In[24]:= |
Out[24]= |
Compute the Meijer transform of a sine:
In[25]:= |
Out[25]= |
Get the result in terms of FoxH:
In[26]:= |
Out[26]= |
Compute the Mellin transform of a sine:
In[27]:= |
Out[27]= |
A result in terms of FoxH is not available:
In[28]:= |
Out[28]= |
Compute the Mellin transform of BesselJ:
In[29]:= |
Out[29]= |
Compute the Neumann transform of a sine:
In[30]:= |
Out[30]= |
Get the result in terms of FoxH:
In[31]:= |
Out[31]= |
Compute the Riesz transform of a sine:
In[32]:= |
Out[32]= |
Get the result in terms of FoxH:
In[33]:= |
Out[33]= |
Compute the Stieltjes transform of a sine:
In[34]:= |
Out[34]= |
Get the result in terms of FoxH:
In[35]:= |
Out[35]= |
Compute the Struve transform of a sine:
In[36]:= |
Out[36]= |
Get the result in terms of FoxH:
In[37]:= |
Out[37]= |
Compute a G-transform of a BesselY function:
In[38]:= |
Out[38]= |
Get the result instead in terms of FoxH:
In[39]:= |
Out[39]= |
The default setting GenerateConditions→False returns a result only, without regard to conditions of convergence:
In[40]:= |
Out[40]= |
With GenerateConditions→True, the result can be a ConditionalExpression whose second part gives the conditions of convergence:
In[41]:= |
Out[41]= |
In[42]:= |
Out[42]= |
In[43]:= |
Out[43]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License