Warning: This resource is provisional

Function Repository Resource:

# GenericIntegralTransform (1.2.0)current version: 3.1.4 »

Compute a variety of integral transforms on input expressions

Contributed by: Paco Jain & Oleg Marichev
 ResourceFunction["GenericIntegralTransform"][f,z,t,"type"] gives the integral transform 𝒯type[f](t) corresponding to the input function f(z), in terms of the new variable t.

## Details and Options

ResourceFunction["GenericIntegralTransform"] supports the following options:
 GenerateConditions True whether to provide conditions under which the given result is valid "FoxHForm" False whether to provide results (where possible) in terms of the FoxH function
Currently supported values for "transform" include the following:
 G-transform {"G", {{af1_List, ae1_List}, {bf1_List, be1_List}}}  Hankel transform {"Hankel", {α_, ν_}}  Hilbert transform {"Hilbert", α_}  Integrate transform {"Integrate", α_}  Laplace transform {"Laplace", α_}  Liouville transform {"Liouville", α_}  Meijer transform {"Meijer", {ν_, α_}}  Mellin transform "Mellin"  Neumann transform {"Neumann", {ν_, α_}}  Riesz transform {"Riesz", α_}  Stieltjes transform {{"Stieltjes", ρ_}}  Struve transform {"Struve", {ν_, α_}}  Weyl transform {"Weyl", α_} 

## Examples

### Basic Examples (2)

Compute the Mellin transform of a Bessel function:

 In[1]:=
 Out[1]=

Compute the Mellin transform of an exponential function. Generically, the result returned is a ConditionalExpression:

 In[2]:=
 Out[2]=

The conditions under which this result holds can be expanded by clicking the "+", followed by "Uniconize":

 In[3]:=

### Scope

#### G-transform

 In[4]:=
 Out[4]=

#### Hankel transform

 In[5]:=
 Out[5]=

#### Mellin transform

 In[6]:=
 Out[6]=

#### Stieltjes transform

 In[7]:=
 Out[7]=

#### Struve transform

 In[8]:=
 Out[8]=

### Options (2)

Using the option setting to suppress convergence conditions from transform results:

 In[9]:=
 Out[9]=

Contrast with the default setting :

 In[10]:=
 Out[10]=

## Publisher

Wolfram|Alpha Math Team

## Version History

• 3.1.4 – 13 September 2023
• 3.1.3 – 13 September 2023
• 3.1.2 – 11 September 2023
• 3.1.1 – 11 September 2023
• 3.1.0 – 11 September 2023
• 3.0.0 – 11 September 2023
• 2.0.3 – 07 November 2022
• 2.0.2 – 19 October 2022
• 2.0.1 – 19 October 2022
• 2.0.0 – 19 October 2022
• 1.2.0 – 19 October 2022
• 1.1.0 – 10 October 2022
• 1.0.0 – 07 October 2022