Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Warning: This resource is provisional
Function Repository Resource:
Compute a variety of integral transforms on input expressions
ResourceFunction["GenericIntegralTransform"][f,z,t,"type"] gives the integral transform 𝒯type[f](t) corresponding to the input function f(z), in terms of the new variable t. |
GenerateConditions | True | whether to provide conditions under which the given result is valid |
"FoxHForm" | False | whether to provide results (where possible) in terms of the FoxH function |
G-transform | {"G", {{af1_List, ae1_List}, {bf1_List, be1_List}}} | |
Hankel transform | {"Hankel", {α_, ν_}} | |
Hilbert transform | {"Hilbert", α_} | |
Integrate transform | {"Integrate", α_} | |
Laplace transform | {"Laplace", α_} | |
Liouville transform | {"Liouville", α_} | |
Meijer transform | {"Meijer", {ν_, α_}} | |
Mellin transform | "Mellin" | |
Neumann transform | {"Neumann", {ν_, α_}} | |
Riesz transform | {"Riesz", α_} | |
Stieltjes transform | {{"Stieltjes", ρ_}} | |
Struve transform | {"Struve", {ν_, α_}} | |
Weyl transform | {"Weyl", α_} | |
Compute the Mellin transform of a Bessel function:
In[1]:= |
Out[1]= |
Compute the Mellin transform of an exponential function. Generically, the result returned is a ConditionalExpression:
In[2]:= |
Out[2]= |
The conditions under which this result holds can be expanded by clicking the "+", followed by "Uniconize":
In[3]:= |
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
Using the option setting GenerateConditions→False to suppress convergence conditions from transform results:
In[9]:= |
Out[9]= |
Contrast with the default setting GenerateConditions→True:
In[10]:= |
Out[10]= |
This work is licensed under a Creative Commons Attribution 4.0 International License