Wolfram Research

Warning: This resource is provisional

Function Repository Resource:

GenericIntegralTransform (1.1.0) current version: 3.1.4 »

Source Notebook

Compute a variety of integral transforms on input expressions

Contributed by: Paco Jain & Oleg Marichev

ResourceFunction["GenericIntegralTransform"][f,z,t,"type"]

gives the integral transform 𝒯type[f](t) corresponding to the input function f(z), in terms of the new variable t.

Details and Options

ResourceFunction["GenericIntegralTransform"] supports the following options:
GenerateConditionsTruewhether to provide conditions under which the given result is valid
"FoxHForm"Falsewhether to provide results (where possible) in terms of the FoxH function
Currently supported values for "transform" include: "Mellin".

Examples

Basic Examples (2) 

Compute the Mellin transform of a Bessel function:

In[1]:=
ResourceFunction["GenericIntegralTransform"][
 BesselJ[\[Nu], z], z, t, "Mellin"]
Out[1]=

Compute the Mellin transform of an exponential function. Generically, the result returned is a ConditionalExpression:

In[2]:=
ResourceFunction["GenericIntegralTransform"][E^(-a x), x, s, "Mellin"]
Out[2]=

The conditions under which this result holds can be expanded by clicking the "+", followed by "Uniconize":

In[3]:=
ConditionalExpression[
 a^-s Gamma[
   s], (Abs[Arg[a]] < \[Pi]/2 && 0 < Re[s] < \[Infinity]) || (Abs[Arg[a]] == \[Pi]/2 && 0 < Re[s] < \[Infinity] && -(1/2) + Re[s] < 1/2)]

Options (2) 

Using the option setting GenerateConditionsFalse to suppress convergence conditions from transform results:

In[4]:=
ResourceFunction["GenericIntegralTransform"][
 BesselJ[\[Nu], z], z, t, "Mellin", GenerateConditions -> False]
Out[4]=

Contrast with the default setting GenerateConditionsTrue:

In[5]:=
ResourceFunction["GenericIntegralTransform"][
 BesselJ[\[Nu], z], z, t, "Mellin"]
Out[5]=

Version History

  • 3.1.4 – 13 September 2023
  • 3.1.3 – 13 September 2023
  • 3.1.2 – 11 September 2023
  • 3.1.1 – 11 September 2023
  • 3.1.0 – 11 September 2023
  • 3.0.0 – 11 September 2023
  • 2.0.3 – 07 November 2022
  • 2.0.2 – 19 October 2022
  • 2.0.1 – 19 October 2022
  • 2.0.0 – 19 October 2022
  • 1.2.0 – 19 October 2022
  • 1.1.0 – 10 October 2022
  • 1.0.0 – 07 October 2022

Related Resources

License Information