Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Warning: This resource is provisional
Function Repository Resource:
Compute a variety of integral transforms on input expressions
ResourceFunction["GenericIntegralTransform"][f,z,t,"transform"] gives the integral transform 𝒯transform[f(z)](t) of the input function f(z), in terms of new variable t. |
| GenerateConditions | False | whether to provide conditions under which the given result is valid |
| "FoxHForm" | False | whether to provide results (where possible) in terms of the FoxH function |
| G-transform | {"G", {{af1_List, ae1_List}, {bf1_List, be1_List}}} | |
| Hankel transform | {"Hankel", {α_, ν_}} | |
| Hilbert transform | {"Hilbert", α_} | |
| Integrate transform | {"Integrate", α_} | put |
| Laplace transform | {"Laplace", α_} | typeset |
| Liouville transform | {"Liouville", α_} | definitions |
| Meijer transform | {"Meijer", {ν_, α_}} | here |
| Mellin transform | "Mellin" | |
| Neumann transform | {"Neumann", {ν_, α_}} | |
| Riesz transform | {"Riesz", α_} | |
| Stieltjes transform | {{"Stieltjes", ρ_}} | |
| Struve transform | {"Struve", {ν_, α_}} | |
| Weyl transform | {"Weyl", α_} | |
Compute the Mellin transform of a Bessel function:
| In[1]:= |
| Out[1]= |
Compute the Mellin transform of an exponential function:
| In[2]:= |
| Out[2]= |
Get the conditions of convergence for when the result above is valid:
| In[3]:= |
| Out[3]= |
Generically, the result returned is a ConditionalExpression. The conditions under which this result holds can be expanded by clicking the “+“, followed by “Uniconize”, or simply by examining the InputForm:
| In[4]:= |
| Out[4]= | ![]() |
| In[5]:= | ![]() |
Compute the Laplace transform of a cosine. By default, GenericIntegralTransform gives results in terms of an Inactive MeijerG function:
| In[6]:= |
| Out[6]= |
Use Activate to allow the Inactive[MeijerG] to evaluate to elementary functions:
| In[7]:= |
| Out[7]= |
Compute the Hankel transform of an arctangent:
| In[8]:= |
| Out[8]= |
To evaluate in terms of simpler functions, use Activate and FunctionExpand:
| In[9]:= |
| Out[9]= | ![]() |
Some results are available in terms of the FoxH function. To return this form where possible, use the "FoxHForm" option:
| In[10]:= |
| Out[10]= |
Compute the G-transform of a sine:
| In[11]:= |
| Out[11]= |
Get the result in terms of FoxH:
| In[12]:= |
| Out[12]= |
Compute the Hankel transform of a sine:
| In[13]:= |
| Out[13]= |
Get the result in terms of FoxH:
| In[14]:= |
| Out[14]= |
Compute the Mellin transform of a sine:
| In[15]:= |
| Out[15]= | ![]() |
A result in terms of FoxH is not available:
| In[16]:= |
| Out[16]= | ![]() |
Compute the Mellin transform of BesselJ:
| In[17]:= |
| Out[17]= |
Compute the Stieltjes transform of a sine:
| In[18]:= |
| Out[18]= |
Get the result in terms of FoxH:
| In[19]:= | ![]() |
| Out[19]= |
Compute the Struve transform of a sine:
| In[20]:= |
| Out[20]= |
Get the result in terms of FoxH:
| In[21]:= |
| Out[21]= | ![]() |
Compute a G-transform of a BesselY function:
| In[22]:= |
| Out[22]= |
Get the result instead in terms of FoxH:
| In[23]:= | ![]() |
| Out[23]= |
The default setting GenerateConditions→False returns a result only, without regard to conditions of convergence:
| In[24]:= |
| Out[24]= |
With GenerateConditions→True, the result can be a ConditionalExpression whose second part gives the conditions of convergence:
| In[25]:= |
| Out[25]= | ![]() |
| In[26]:= |
| Out[26]= |
| In[27]:= |
| Out[27]= |
This work is licensed under a Creative Commons Attribution 4.0 International License