Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Warning: This resource is provisional
Function Repository Resource:
Compute a variety of integral transforms on input expressions
ResourceFunction["GenericIntegralTransform"][f,z,t,transform] gives the integral transform 𝒯transform[f(z)](t) of the input function f(z), in terms of new variable t. | |
ResourceFunction["GenericIntegralTransform"][] prints a table of all available transforms and their definitions. | |
ResourceFunction["GenericIntegralTransform"][patt] prints a table of available transforms whose names match the string pattern patt. | |
ResourceFunction["GenericIntegralTransform"][…, form] prints a table of transforms with definitions displayed in the specified form. |
GenerateConditions | False | whether to provide conditions under which the given result is valid |
"FoxHForm" | False | whether to provide results (where possible) in terms of the FoxH function |
Fourier transform | "Fourier" | "FourierExp" | ![]() ![]() |
Fourier cosine transform | "FourierCos" | ![]() |
Fourier sine transform | "FourierSin" | ![]() |
G-transform | ![]() | ![]() |
Hankel transform | {"Hankel",ν} | ![]() |
Hankel transform with Power | {"Hankel",ν,α} | ![]() |
Hartley tranform | "Hartley" | ![]() |
Hilbert transform | "Hilbert" | ![]() ![]() |
Hilbert transform with Power | {"Hilbert",α} | ![]() ![]() |
Integrate transform | "Integrate" | ![]() |
Integrate transform with Power | {"Integrate",α} | ![]() |
Laplace transform | "Laplace" | ![]() |
Laplace transform with Power | {"Laplace",α} | ![]() |
Laplace transform (2‐sided) | "LaplaceTwoSided" | ![]() |
Mellin transform | "Mellin" | ![]() |
Mellin transform with Power | {"Mellin",α} | ![]() |
Neumann transform | {"Neumann”, ν} | ![]() |
Neumann transform with Power | {"Neumann”, ν,α} | ![]() |
Riesz transform | {"Riesz”, α} | ![]() |
Stieltjes transform | {"Stieltjes”, ρ} | ![]() |
Struve transform | {“Struve”, ν} | ![]() |
Struve transform with Power | {"Struve”, ν,α} | ![]() |
Weyl transform | {“Weyl”, α} | ![]() |
Compute the Mellin transform of a Bessel function:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compute the Mellin transform of an exponential function:
In[2]:= | ![]() |
Out[2]= | ![]() |
Get the conditions of convergence for when the result above is valid:
In[3]:= | ![]() |
Out[3]= | ![]() |
Generically, the result returned is a ConditionalExpression. The conditions under which this result holds can be expanded by clicking the “+“, followed by “Uniconize”, or simply by examining the InputForm:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Compute the Laplace transform of a cosine. By default, GenericIntegralTransform gives results in terms of an Inactive MeijerG function:
In[6]:= | ![]() |
Out[6]= | ![]() |
Use Activate to allow the Inactive[MeijerG] to evaluate to elementary functions:
In[7]:= | ![]() |
Out[7]= | ![]() |
Compute the Hankel transform of an arctangent:
In[8]:= | ![]() |
Out[8]= | ![]() |
To evaluate in terms of simpler functions, use Activate and FunctionExpand:
In[9]:= | ![]() |
Out[9]= | ![]() |
Some results are available in terms of the FoxH function. To return this form where possible, use the "FoxHForm" option:
In[10]:= | ![]() |
Out[10]= | ![]() |
Get a table of all available transforms, with definitions in TraditionalForm:
In[11]:= | ![]() |
List all transforms starting with the character "H", with definitions given in InputForm:
In[12]:= | ![]() |
Compute the G-transform of a sine:
In[13]:= | ![]() |
Out[13]= | ![]() |
Get the result in terms of FoxH:
In[14]:= | ![]() |
Out[14]= | ![]() |
Compute the Hankel transform of a sine:
In[15]:= | ![]() |
Out[15]= | ![]() |
Get the result in terms of FoxH:
In[16]:= | ![]() |
Out[16]= | ![]() |
Compute the Hilbert transform of a sine:
In[17]:= | ![]() |
Out[17]= | ![]() |
Get the result in terms of FoxH:
In[18]:= | ![]() |
Out[18]= | ![]() |
Compute the "Integrate transform" of a sine:
In[19]:= | ![]() |
Out[19]= | ![]() |
Get the result in terms of FoxH:
In[20]:= | ![]() |
Out[20]= | ![]() |
Compute the Laplace transform of a sine:
In[21]:= | ![]() |
Out[21]= | ![]() |
Get the result in terms of FoxH:
In[22]:= | ![]() |
Out[22]= | ![]() |
Compute the Liousville transform of a sine:
In[23]:= | ![]() |
Out[23]= | ![]() |
Get the result in terms of FoxH:
In[24]:= | ![]() |
Out[24]= | ![]() |
Compute the Meijer transform of a sine:
In[25]:= | ![]() |
Out[25]= | ![]() |
Get the result in terms of FoxH:
In[26]:= | ![]() |
Out[26]= | ![]() |
Compute the Mellin transform of a sine:
In[27]:= | ![]() |
Out[27]= | ![]() |
A result in terms of FoxH is not available:
In[28]:= | ![]() |
Out[28]= | ![]() |
Compute the Mellin transform of BesselJ:
In[29]:= | ![]() |
Out[29]= | ![]() |
Compute the Neumann transform of a sine:
In[30]:= | ![]() |
Out[30]= | ![]() |
Get the result in terms of FoxH:
In[31]:= | ![]() |
Out[31]= | ![]() |
Compute the Riesz transform of a sine:
In[32]:= | ![]() |
Out[32]= | ![]() |
Get the result in terms of FoxH:
In[33]:= | ![]() |
Out[33]= | ![]() |
Compute the Stieltjes transform of a sine:
In[34]:= | ![]() |
Out[34]= | ![]() |
Get the result in terms of FoxH:
In[35]:= | ![]() |
Out[35]= | ![]() |
Compute the Struve transform of a sine:
In[36]:= | ![]() |
Out[36]= | ![]() |
Get the result in terms of FoxH:
In[37]:= | ![]() |
Out[37]= | ![]() |
Compute a G-transform of a BesselY function:
In[38]:= | ![]() |
Out[38]= | ![]() |
Get the result instead in terms of FoxH:
In[39]:= | ![]() |
Out[39]= | ![]() |
The default setting GenerateConditions→False returns a result only, without regard to conditions of convergence:
In[40]:= | ![]() |
Out[40]= | ![]() |
With GenerateConditions→True, the result can be a ConditionalExpression whose second part gives the conditions of convergence:
In[41]:= | ![]() |
Out[41]= | ![]() |
In[42]:= | ![]() |
Out[42]= | ![]() |
In[43]:= | ![]() |
Out[43]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License