Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MGroups

Guides

  • MGroups Package

Symbols

  • FormMAction
  • FormMGroup
  • MAbelianQ
  • MAction
  • MAdditiveGroup
  • MAutomorphism
  • MCayleyGraph3D
  • MCayleyGraph
  • MCayleyTable
  • MCoset
  • MCycleForm
  • MCyclicQ
  • MDihedralGroup
  • MEDP
  • MElementCentralizer
  • MElementInverse
  • MElementOrbit
  • MElementOrder
  • MElementPower
  • MElementStabilizer
  • MFactorGroup
  • MGenerateSubgroup
  • MGroupCenter
  • MGroupDomain
  • MGroupIdentity
  • MGroup
  • MGroupOrder
  • MHomomorphism
  • MInnerAutomorphism
  • MInversesTable
  • MIsomorphism
  • MKernelAction
  • MKlein4Group
  • MMorphismKernel
  • MMultiplicativeGroup
  • MNormalSubgroupQ
  • MNormalSubgroups
  • MonoidQ
  • MPermutationRepresentation
  • MPermutationsGroup
  • MQuaternionGroup
  • MSubgroupLattice3D
  • MSubgroupLattice
  • MSubgroupQ
  • MSubgroups
  • MTuple
  • MVisualiseMorphism
  • SemiGroupQ
Taggar`MGroups`
MElementPower
​
MElementPower
[group,x,k]
raises
x
to power
k
in
group
.
​
​
MElementPower
[group,elements,k]
raises
elements
to power
k
in
group
.
​
​
MElementPower
[group,x,powers]
raises element to
powers
in
group
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Define
U
13
:
In[1]:=
U
13
=
MMultiplicativeGroup
[13]
Out[1]=
MGroup
Operation: Binary
Order: 12

Find
3
12
:
In[2]:=
MElementPower
[
U
13
,12,3]
Out[2]=
12
Find multiple powers of an element:
In[3]:=
MElementPower
[
U
13
,12,{1,2,3}]
Out[3]=
{12,1,12}
Raise each element of
U
13
to their
nd
2
powers:
In[4]:=
MGroupDomain
[
U
13
]​​
MElementPower
[
U
13
,%,2]
Out[4]=
{1,2,3,4,5,6,7,8,9,10,11,12}
Out[4]=
{1,4,9,3,12,10,10,12,3,9,4,1}
RelatedGuides
▪
MGroups Package
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com