Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MGroups

Guides

  • MGroups Package

Symbols

  • FormMAction
  • FormMGroup
  • MAbelianQ
  • MAction
  • MAdditiveGroup
  • MAutomorphism
  • MCayleyGraph3D
  • MCayleyGraph
  • MCayleyTable
  • MCoset
  • MCycleForm
  • MCyclicQ
  • MDihedralGroup
  • MEDP
  • MElementCentralizer
  • MElementInverse
  • MElementOrbit
  • MElementOrder
  • MElementPower
  • MElementStabilizer
  • MFactorGroup
  • MGenerateSubgroup
  • MGroupCenter
  • MGroupDomain
  • MGroupIdentity
  • MGroup
  • MGroupOrder
  • MHomomorphism
  • MInnerAutomorphism
  • MInversesTable
  • MIsomorphism
  • MKernelAction
  • MKlein4Group
  • MMorphismKernel
  • MMultiplicativeGroup
  • MNormalSubgroupQ
  • MNormalSubgroups
  • MonoidQ
  • MPermutationRepresentation
  • MPermutationsGroup
  • MQuaternionGroup
  • MSubgroupLattice3D
  • MSubgroupLattice
  • MSubgroupQ
  • MSubgroups
  • MTuple
  • MVisualiseMorphism
  • SemiGroupQ
Taggar`MGroups`
MAbelianQ
​
MAbelianQ
[group]
checks whether
group
is abelian or not.
​
​
MAbelianQ
[group,subgroup]
checks whether
subgroup
is abelian or not.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Check if
MKlein4Group
is cyclic or not:
In[1]:=
MKlein4Group
//
MAbelianQ
Out[1]=
True
D
3
is not abelian:
In[2]:=
D
3
=
MDihedralGroup
[3]
Out[2]=
MGroup
Operation: Binary
Order: 6

In[3]:=
MAbelianQ
[
D
3
]
Out[3]=
False
Check if a subgroup is cyclic or not:
In[4]:=
MAbelianQ
[
D
3
,{"r0","r2"}]
Out[4]=
True
Find abelian subgroups of
U
30
:
In[5]:=
subs=
MSubgroups
[
D
3
]
Out[5]//TableForm=
Subgroup
Generated by
{r0}
{r0}
{r0,r1,r2}
{r1}
{r0,s0}
{s0}
{r0,s1}
{s1}
{r0,s2}
{s2}
{r0,r1,r2,s0,s1,s2}
{r1,s0}
In[6]:=
Selectsubs1All,1,
MAbelianQ
[
D
3
,#]&
Out[6]=
{{r0},{r0,r1,r2},{r0,s0},{r0,s1},{r0,s2}}
where subs[[1]][[All,1]] extracts the list of subgroups from subs.
RelatedGuides
▪
MGroups Package
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com