Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MGroups

Guides

  • MGroups Package

Symbols

  • FormMAction
  • FormMGroup
  • MAbelianQ
  • MAction
  • MAdditiveGroup
  • MAutomorphism
  • MCayleyGraph3D
  • MCayleyGraph
  • MCayleyTable
  • MCoset
  • MCycleForm
  • MCyclicQ
  • MDihedralGroup
  • MEDP
  • MElementCentralizer
  • MElementInverse
  • MElementOrbit
  • MElementOrder
  • MElementPower
  • MElementStabilizer
  • MFactorGroup
  • MGenerateSubgroup
  • MGroupCenter
  • MGroupDomain
  • MGroupIdentity
  • MGroup
  • MGroupOrder
  • MHomomorphism
  • MInnerAutomorphism
  • MInversesTable
  • MIsomorphism
  • MKernelAction
  • MKlein4Group
  • MMorphismKernel
  • MMultiplicativeGroup
  • MNormalSubgroupQ
  • MNormalSubgroups
  • MonoidQ
  • MPermutationRepresentation
  • MPermutationsGroup
  • MQuaternionGroup
  • MSubgroupLattice3D
  • MSubgroupLattice
  • MSubgroupQ
  • MSubgroups
  • MTuple
  • MVisualiseMorphism
  • SemiGroupQ
Taggar`MGroups`
MCoset
​
MCoset
[group,subgroup,x,orientation]
generates the left or right coset of
group
in
subgroup
represented by
x
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Define group:
In[1]:=
G=
MAdditiveGroup
[18]
Out[1]=
MGroup
Operation: Binary
Order: 18

Define subgroup:
In[2]:=
H=
MGenerateSubgroup
[G,6]
Out[2]=
{0,6,12}
Define coset:
In[3]:=
MCoset
[G,H,2]
Out[3]=
{2,8,14}
See list of elements and cosets:
In[4]:=
TableFormTablex,Sort@
MCoset
[G,H,x],x,
MGroupDomain
[G],TableDepth2
Out[4]//TableForm=
0
{0,6,12}
1
{1,7,13}
2
{2,8,14}
3
{3,9,15}
4
{4,10,16}
5
{5,11,17}
6
{0,6,12}
7
{1,7,13}
8
{2,8,14}
9
{3,9,15}
10
{4,10,16}
11
{5,11,17}
12
{0,6,12}
13
{1,7,13}
14
{2,8,14}
15
{3,9,15}
16
{4,10,16}
17
{5,11,17}
See right cosets:
In[5]:=
MCoset
[G,H,2,"r"]
Out[5]=
{2,8,14}
RelatedGuides
▪
MGroups Package
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com