Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MGroups
Guides
MGroups Package
Symbols
FormMAction
FormMGroup
MAbelianQ
MAction
MAdditiveGroup
MAutomorphism
MCayleyGraph3D
MCayleyGraph
MCayleyTable
MCoset
MCycleForm
MCyclicQ
MDihedralGroup
MEDP
MElementCentralizer
MElementInverse
MElementOrbit
MElementOrder
MElementPower
MElementStabilizer
MFactorGroup
MGenerateSubgroup
MGroupCenter
MGroupDomain
MGroupIdentity
MGroup
MGroupOrder
MHomomorphism
MInnerAutomorphism
MInversesTable
MIsomorphism
MKernelAction
MKlein4Group
MMorphismKernel
MMultiplicativeGroup
MNormalSubgroupQ
MNormalSubgroups
MonoidQ
MPermutationRepresentation
MPermutationsGroup
MQuaternionGroup
MSubgroupLattice3D
MSubgroupLattice
MSubgroupQ
MSubgroups
MTuple
MVisualiseMorphism
SemiGroupQ
Taggar`MGroups`
M
E
l
e
m
e
n
t
O
r
d
e
r
M
E
l
e
m
e
n
t
O
r
d
e
r
[
g
r
o
u
p
,
e
l
e
m
e
n
t
]
f
i
n
d
s
t
h
e
o
r
d
e
r
o
f
e
l
e
m
e
n
t
i
n
g
r
o
u
p
.
M
E
l
e
m
e
n
t
O
r
d
e
r
[
g
r
o
u
p
,
e
l
e
m
e
n
t
s
]
f
i
n
d
s
t
h
e
o
r
d
e
r
s
o
f
e
l
e
m
e
n
t
s
i
n
g
r
o
u
p
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Find order of an element in
M
K
l
e
i
n
4
G
r
o
u
p
:
I
n
[
1
]
:
=
M
E
l
e
m
e
n
t
O
r
d
e
r
M
K
l
e
i
n
4
G
r
o
u
p
,
"
e
"
O
u
t
[
1
]
=
1
Find order of multiple elements:
I
n
[
2
]
:
=
M
E
l
e
m
e
n
t
O
r
d
e
r
M
K
l
e
i
n
4
G
r
o
u
p
,
{
"
e
"
,
"
a
"
,
"
b
"
,
"
c
"
}
O
u
t
[
2
]
=
{
1
,
2
,
2
,
2
}
S
e
e
A
l
s
o
M
I
n
v
e
r
s
e
s
T
a
b
l
e
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
M
G
r
o
u
p
s
P
a
c
k
a
g
e
"
"