Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MGroups

Guides

  • MGroups Package

Symbols

  • FormMAction
  • FormMGroup
  • MAbelianQ
  • MAction
  • MAdditiveGroup
  • MAutomorphism
  • MCayleyGraph3D
  • MCayleyGraph
  • MCayleyTable
  • MCoset
  • MCycleForm
  • MCyclicQ
  • MDihedralGroup
  • MEDP
  • MElementCentralizer
  • MElementInverse
  • MElementOrbit
  • MElementOrder
  • MElementPower
  • MElementStabilizer
  • MFactorGroup
  • MGenerateSubgroup
  • MGroupCenter
  • MGroupDomain
  • MGroupIdentity
  • MGroup
  • MGroupOrder
  • MHomomorphism
  • MInnerAutomorphism
  • MInversesTable
  • MIsomorphism
  • MKernelAction
  • MKlein4Group
  • MMorphismKernel
  • MMultiplicativeGroup
  • MNormalSubgroupQ
  • MNormalSubgroups
  • MonoidQ
  • MPermutationRepresentation
  • MPermutationsGroup
  • MQuaternionGroup
  • MSubgroupLattice3D
  • MSubgroupLattice
  • MSubgroupQ
  • MSubgroups
  • MTuple
  • MVisualiseMorphism
  • SemiGroupQ
Taggar`MGroups`
MCayleyGraph
​
MCayleyGraph
[group,generators]
draws the Cayley graph of
group
corresponding to
generators
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Draw the Cayley graph of
S
3
:
We know
S
3
is generated by the permutations (123) and (23), therefore:
In[1]:=
MCayleyGraph
​​
MPermutationsGroup
[3],​​{"(23)","(123)"}​​
Out[1]=
Hover on the elements to see which element is represented by each node.
Compare it with what Mathematica's in-built command gives:
In[2]:=
CayleyGraph[SymmetricGroup[3]]
Out[2]=
Try it with a different set of generators:
In[3]:=
MCayleyGraph
​​
MPermutationsGroup
[3],​​{"(12)","(23)"}​​
Out[3]=
Cayley graph of an
MEDP
:
In[4]:=
edp=
MEDP
​​
MAdditiveGroup
[3],​​
MAdditiveGroup
[4]​​
Out[4]=
MGroup
Operation: Binary
Order: 12

generated by
{(1,1)}
:
In[5]:=
MCayleyGraph
edp,
MTuple
[{1,1}]
Out[5]=
Generated by
{(1,0),(0,1)}
:
In[6]:=
MCayleyGraph
edp,
MTuple
[{1,0}],
MTuple
[{0,1}]
Out[6]=
SeeAlso
MCayleyGraph3D
RelatedGuides
▪
MGroups Package

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com