Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MGroups

Guides

  • MGroups Package

Symbols

  • FormMAction
  • FormMGroup
  • MAbelianQ
  • MAction
  • MAdditiveGroup
  • MAutomorphism
  • MCayleyGraph3D
  • MCayleyGraph
  • MCayleyTable
  • MCoset
  • MCycleForm
  • MCyclicQ
  • MDihedralGroup
  • MEDP
  • MElementCentralizer
  • MElementInverse
  • MElementOrbit
  • MElementOrder
  • MElementPower
  • MElementStabilizer
  • MFactorGroup
  • MGenerateSubgroup
  • MGroupCenter
  • MGroupDomain
  • MGroupIdentity
  • MGroup
  • MGroupOrder
  • MHomomorphism
  • MInnerAutomorphism
  • MInversesTable
  • MIsomorphism
  • MKernelAction
  • MKlein4Group
  • MMorphismKernel
  • MMultiplicativeGroup
  • MNormalSubgroupQ
  • MNormalSubgroups
  • MonoidQ
  • MPermutationRepresentation
  • MPermutationsGroup
  • MQuaternionGroup
  • MSubgroupLattice3D
  • MSubgroupLattice
  • MSubgroupQ
  • MSubgroups
  • MTuple
  • MVisualiseMorphism
  • SemiGroupQ
MGroups Package
MGroups package allows exploration of finite groups in terms of their Cayley tables, subgroup structures (lattices), group morphisms, actions, and so on. It provides extensive functionality to study finite groups using functions such as
MCayleyTable
,
MSubgroups
, and so on.
MCayleyTable
— Cayley table of a group
MCayleyGraph
— Cayley graph of a group corresponding to certain generators
MInversesTable
— concise table summarising element inverses and orders
MSubgroups
— subgroups of a group
MSubgroupLattice
— subgroup lattice of a group
MFactorGroup
— factor or quotient group by a normal subgroup
MGroup
▪
FormMGroup
▪
SemiGroupQ
▪
MonoidQ
▪
MGroupDomain
▪
MGroupIdentity
▪
MElementPower
▪
MGroupOrder
▪
MElementInverse
▪
MElementOrder
▪
MCyclicQ
▪
MAbelianQ
▪
MCayleyTable
▪
MCayleyGraph
▪
MCayleyGraph3D
▪
MInversesTable
▪
MSubgroupQ
▪
MGenerateSubgroup
▪
MSubgroups
▪
MSubgroupLattice
▪
MSubgroupLattice3D
▪
MCoset
▪
MNormalSubgroupQ
▪
MNormalSubgroups
▪
MFactorGroup
▪
MGroupCenter
▪
MElementCentralizer
▪
MAdditiveGroup
▪
MMultiplicativeGroup
▪
MDihedralGroup
▪
MPermutationsGroup
▪
MCycleForm
▪
MKlein4Group
▪
MQuaternionGroup
▪
MTuple
▪
MEDP
▪
MHomomorphism
▪
MIsomorphism
▪
MAutomorphism
▪
MInnerAutomorphism
▪
MVisualiseMorphism
▪
MAction
▪
FormMAction
▪
MPermutationRepresentation
▪
MKernelAction
▪
MElementStabilizer
▪
MElementOrbit
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com