Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CreateCoil

Guides

  • Creating Coils

Tech Notes

  • Physics of Creating Simple, Discrete Coils

Symbols

  • DesToErr
  • EllipseCoilPlot3D
  • EllipseCoilPlot
  • EllipseFieldPlot2D
  • EllipseFieldPlot
  • FindEllipseCoil
  • FindLoopCoil
  • FindSaddleCoilAxial
  • FindSaddleCoilAzimuthal
  • FindSaddleCoil
  • HarmonicFieldPlot
  • LoopCoilPlot3D
  • LoopCoilPlot
  • LoopFieldPlot2D
  • LoopFieldPlot
  • SaddleCoilPlot3D
  • SaddleCoilPlot
  • SaddleFieldPlot2D
  • SaddleFieldPlot
NoahH`CreateCoil`
SaddleFieldPlot
​
SaddleFieldPlot
[{
χ
c1
,
χ
c2
,…},{
ϕ
c1
,
ϕ
c2
,…},{
i
χ1
,
i
χ2
,…},
ρ
c
,{n,m}]
plots the
B
x
,
B
y
and
B
z
field components along each of the
x
-,
y
- and
z
-coil axes, generated by the saddle-based coil with axial separations
χ
c1
,
χ
c2
,
…
, azimuthal extents
ϕ
c1
,
ϕ
c2
,
…
, turn ratios
i
χ1
,
i
χ2
,
…
, radius
ρ
c
and target field harmonic of order
n
and degree
m
.
​
​
SaddleFieldPlot
[{Coilχc[1]
χ
c1
,Coilχc[2]
χ
c2
,…},{Coilϕc[1]
ϕ
c1
,Coilϕc[2]
ϕ
c2
,…},…]
is an alternative way of specifying the axial separations
χc
1
,
χc
2
,
…
and azimuthal extents
ϕ
c1
,
ϕ
c2
,
…
.
​
Details and Options

Examples  
(7)
Basic Examples  
(4)
Plot the
B
x
,
B
y
and
B
z
field components along each of the
x
-,
y
- and
z
-coil axes, generated by the saddle-based coil optimised for the
B
2, 2
(i.e.
n=2
,
m=2
) field harmonic, and with a radius of 0.1 metres:
In[1]:=
SaddleFieldPlot
[{1.53,2.00},{0.37,0.68},{2,1},0.1,{2,2}]
Out[1]=
​
Directly use the output of
FindSaddleCoil
:
In[1]:=
sol=First/@
FindSaddleCoil
[{1,-1,1,-1},{2,1},2,{0.1,2.56}]
Out[1]=
AxialSeparations{Coilχc[1]0.2995,Coilχc[2]0.417035,Coilχc[3]0.654955,Coilχc[4]2.5558,DesToErr13.2438},AzimuthalExtents{Coilϕc[1]0.733038,Coilϕc[2]1.36136}
In[2]:=
SaddleFieldPlot
[sol["AxialSeparations"],sol["AzimuthalExtents"],{1,-1,1,-1},0.1,{2,1},ImageSizeSmall]
Out[2]=
​
Use automatic plot range for the
B
-1
I
χ
vs
x
and
B
-1
I
χ
vs
y
plots, and a custom range for the
B
-1
I
χ
vs
z
plot (see the
Options › PlotRange section
for more details on PlotRange):
In[1]:=
SaddleFieldPlot
[{0.30,0.42,0.65,2.56},{0.73,1.36},{1,-1,1,-1},1,{2,1},ImageSizeSmall,PlotRange{Automatic,Automatic,{{0.5,1.5},{0.6,1.5}}}]
Out[1]=
​
Open the sections below for more options and examples:
Options  
(3)

SeeAlso
FindSaddleCoil
 
▪
SaddleCoilPlot
 
▪
SaddleFieldPlot2D
 
▪
HarmonicFieldPlot
 
▪
FindSaddleCoilAxial
 
▪
FindSaddleCoilAzimuthal
 
▪
LoopFieldPlot
 
▪
EllipseFieldPlot
TechNotes
▪
Physics of Creating Simple, Discrete Coils
RelatedGuides
▪
Creating Coils
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com