Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CreateCoil

Guides

  • Creating Coils

Tech Notes

  • Physics of Creating Simple, Discrete Coils

Symbols

  • DesToErr
  • EllipseCoilPlot3D
  • EllipseCoilPlot
  • EllipseFieldPlot2D
  • EllipseFieldPlot
  • FindEllipseCoil
  • FindLoopCoil
  • FindSaddleCoilAxial
  • FindSaddleCoilAzimuthal
  • FindSaddleCoil
  • HarmonicFieldPlot
  • LoopCoilPlot3D
  • LoopCoilPlot
  • LoopFieldPlot2D
  • LoopFieldPlot
  • SaddleCoilPlot3D
  • SaddleCoilPlot
  • SaddleFieldPlot2D
  • SaddleFieldPlot
NoahH`CreateCoil`
LoopCoilPlot3D
​
LoopCoilPlot3D
[{
χ
c1
,
χ
c2
,…},{
i
χ1
,
i
χ2
,…},
ρ
c
,n]
returns a 3D plot of the loop-based coil with axial separations
χ
c1
,
χ
c2
,
…
, turn ratios
i
χ1
,
i
χ2
,
…
, radius
ρ
c
and target field harmonic of order
n
.
​
​
LoopCoilPlot3D
[{Coilχc[1]
χ
c1
,Coilχc[2]
χ
c2
,…},…]
is an alternative way of specifying the axial separations
χ
c1
,
χ
c2
,
…
.
​
Details and Options

Examples  
(13)
Basic Examples  
(3)
Plot a schematic of a loop coil optimised to generate the
n=1
field harmonic, with a radius of 0.1 metres:
In[1]:=
LoopCoilPlot3D
[{0.362,0.549,0.697},{1,-2,2},0.1,1]
Out[1]=
​
Directly use the output of
FindLoopCoil
:
In[1]:=
sols=
FindLoopCoil
{1,-2,2},2,0.1,
3
2,"CoilsReturned"3
Out[1]=
{{Coilχc[1]0.554372,Coilχc[2]0.674766,Coilχc[3]0.866025,DesToErr34.5198},{Coilχc[1]0.5531,Coilχc[2]0.673608,Coilχc[3]0.865142,DesToErr33.5852},{Coilχc[1]0.552599,Coilχc[2]0.673065,Coilχc[3]0.864629,DesToErr33.2277}}
In[2]:=
LoopCoilPlot3D
[First[sols],{1,-2,2},0.1,2]
Out[2]=
​
Use an opaque cylinder and a unique colour for each coil primitive:
In[1]:=
sol=First@
FindLoopCoil
[{1,1},1,{0.1,2}]
Out[1]=
{Coilχc[1]0.384385,Coilχc[2]1.05207,DesToErr18.1046}
In[2]:=
LoopCoilPlot3D
[sol,{1,1},0.1,1,PlotStyleAutomatic,"CylinderStyle"{FaceForm[GrayLevel[.94]],EdgeForm[{GrayLevel[.7],Thickness[.0025]}]},"ThicknessScaling".003]
Out[2]=
Options  
(10)

SeeAlso
FindLoopCoil
 
▪
LoopFieldPlot
 
▪
LoopFieldPlot2D
 
▪
SaddleCoilPlot3D
 
▪
EllipseCoilPlot3D
 
▪
LoopCoilPlot
TechNotes
▪
Physics of Creating Simple, Discrete Coils
RelatedGuides
▪
Creating Coils

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com