Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CreateCoil

Guides

  • Creating Coils

Tech Notes

  • Physics of Creating Simple, Discrete Coils

Symbols

  • DesToErr
  • EllipseCoilPlot3D
  • EllipseCoilPlot
  • EllipseFieldPlot2D
  • EllipseFieldPlot
  • FindEllipseCoil
  • FindLoopCoil
  • FindSaddleCoilAxial
  • FindSaddleCoilAzimuthal
  • FindSaddleCoil
  • HarmonicFieldPlot
  • LoopCoilPlot3D
  • LoopCoilPlot
  • LoopFieldPlot2D
  • LoopFieldPlot
  • SaddleCoilPlot3D
  • SaddleCoilPlot
  • SaddleFieldPlot2D
  • SaddleFieldPlot
NoahH`CreateCoil`
FindLoopCoil
​
FindLoopCoil
[{
i
χ1
,
i
χ2
,…},n,{
χ
cmin
,
χ
cmax
}]
returns, for loop pairs of turn ratios
i
χ1
,
i
χ2
,
…
, axial separations between
χ
c min
and
χ
c max
optimised to generate the field harmonic of order
n
.
​
Details and Options

Examples  
(14)
Basic Examples  
(3)
Optimise a Helmholtz pair to generate the
n=1
field harmonic, with a normalised separation between 0.01 and 1:
In[1]:=
FindLoopCoil
[{1},1,{0.01,1}]
Out[1]=
{{Coilχc[1]0.5,DesToErr8.311}}
​
Optimise an anti-Helmholtz pair (also known as a Maxwell coil) to generate the
n=2
field harmonic, with a normalised separation between 0.01 and 1:
In[1]:=
FindLoopCoil
[{1},2,{0.01,1}]
Out[1]=
{{Coilχc[1]0.866025,DesToErr9.42734}}
​
Optimise three loop pairs, of turn ratios 1, -2 and 2, to generate the
B
2, 0
(i.e.
n=2
) field harmonic, with normalised separations between 0.1 and
3
/2
.
First, we can use
HarmonicFieldPlot
to examine the Cartesian components of the desired field along the
x
-,
y
- and
z
-axes:
In[1]:=
HarmonicFieldPlot
[{2,0},ImageSizeSmall]
Out[1]=

,
,

Now find coils which aim to generate this field:
In[2]:=
sols=
FindLoopCoil
{1,-2,2},2,0.1,
3
2
Out[2]=
{{Coilχc[1]0.554372,Coilχc[2]0.674766,Coilχc[3]0.866025,DesToErr34.5198},{Coilχc[1]0.5531,Coilχc[2]0.673608,Coilχc[3]0.865142,DesToErr33.5852},{Coilχc[1]0.552599,Coilχc[2]0.673065,Coilχc[3]0.864629,DesToErr33.2277},{Coilχc[1]0.551441,Coilχc[2]0.671812,Coilχc[3]0.863445,DesToErr32.4277},{Coilχc[1]0.549406,Coilχc[2]0.669616,Coilχc[3]0.861379,DesToErr31.1048},{Coilχc[1]0.549032,Coilχc[2]0.669214,Coilχc[3]0.861001,DesToErr30.8729},{Coilχc[1]0.547837,Coilχc[2]0.66793,Coilχc[3]0.859797,DesToErr30.1515},{Coilχc[1]0.546613,Coilχc[2]0.666618,Coilχc[3]0.858569,DesToErr29.4437},{Coilχc[1]0.545779,Coilχc[2]0.665726,Coilχc[3]0.857737,DesToErr28.9793},{Coilχc[1]0.543812,Coilχc[2]0.663628,Coilχc[3]0.855782,DesToErr27.9345}}
Use
LoopFieldPlot
to plot the field along the
x
-,
y
- and
z
-axes generated by the best solution:
In[3]:=
LoopFieldPlot
[First[sols],{1,-2,2},1,2,ImageSizeSmall]
Out[3]=

,
,

Use
LoopFieldPlot2D
to plot the
B
x
,
B
y
and
B
z
field components in the
xz
-plane:
In[4]:=
LoopFieldPlot2D
[First[sols],{1,-2,2},1,2,ImageSize200]
Out[4]=

,
,

Use
LoopCoilPlot
to make a schematic of the coil in the
ϕz
-plane:
In[5]:=
LoopCoilPlot
[First[sols],{1,-2,2},1,2]
Out[5]=
Use
LoopCoilPlot3D
to make a 3D plot of the coil:
In[6]:=
LoopCoilPlot3D
[First[sols],{1,-2,2},1,2]
Out[6]=
Generalizations & Extensions  
(1)

Options  
(9)

Neat Examples  
(1)

SeeAlso
LoopFieldPlot
 
▪
LoopFieldPlot2D
 
▪
LoopCoilPlot
 
▪
LoopCoilPlot3D
 
▪
HarmonicFieldPlot
 
▪
FindSaddleCoil
 
▪
FindEllipseCoil
TechNotes
▪
Physics of Creating Simple, Discrete Coils

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com