Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CreateCoil

Guides

  • Creating Coils

Tech Notes

  • Physics of Creating Simple, Discrete Coils

Symbols

  • DesToErr
  • EllipseCoilPlot3D
  • EllipseCoilPlot
  • EllipseFieldPlot2D
  • EllipseFieldPlot
  • FindEllipseCoil
  • FindLoopCoil
  • FindSaddleCoilAxial
  • FindSaddleCoilAzimuthal
  • FindSaddleCoil
  • HarmonicFieldPlot
  • LoopCoilPlot3D
  • LoopCoilPlot
  • LoopFieldPlot2D
  • LoopFieldPlot
  • SaddleCoilPlot3D
  • SaddleCoilPlot
  • SaddleFieldPlot2D
  • SaddleFieldPlot
NoahH`CreateCoil`
EllipseCoilPlot
​
EllipseCoilPlot
[{{
χ
c1
,
ψ
c1
},{
χ
c2
,
ψ
c2
},…},{
i
χ1
,
i
χ2
,…},
ρ
c
,{n,m}]
plots a schematic in the
ϕ
z
-plane of the ellipse-based coil with axial separations
χ
c1
,
χ
c2
,
…
, ellipse extents
ψ
c1
,
ψ
c2
,
…
, turn ratios
i
χ1
,
i
χ2
,
…
, radius
ρ
c
and target field harmonic of order
n
and degree
m
.
​
​
EllipseCoilPlot
[{Coilχc[1]
χ
c1
,Coilχc[2]
χ
c2
,…,Coilψc[1]
ψ
c1
,Coilψc[2]
ψ
c2
,…},…]
is an alternative way of specifying the axial separations
χc
1
,
χc
2
,
…
and ellipse extents
ψ
c1
,
ψ
c2
,
…
.
​
Details and Options

Examples  
(7)
Basic Examples  
(4)
Plot a schematic of an ellipse coil optimised to generate the
B
1, 1
(i.e.
n=1
,
m=1
) field harmonic, with a radius of 0.1 metres:
In[1]:=
EllipseCoilPlot
[{{0.46,0.40}},{1},0.1,{1,1}]
Out[1]=
Contents cannot be rendered at this time; please try again later
​
Directly use the output of
FindEllipseCoil
:
In[1]:=
sols=
FindEllipseCoil
[{1,-1},{2,1},{0.1,1.32},{0.1,0.5},"CoilsReturned"3]
Out[1]=
{{Coilχc[1]0.464584,Coilχc[2]0.596781,Coilψc[1]0.282267,Coilψc[2]0.499178,DesToErr3.51843},{Coilχc[1]0.465795,Coilχc[2]0.595184,Coilψc[1]0.283759,Coilψc[2]0.496138,DesToErr3.51223},{Coilχc[1]0.467115,Coilχc[2]0.593459,Coilψc[1]0.285394,Coilψc[2]0.492857,DesToErr3.50568}}
In[2]:=
EllipseCoilPlot
[First[sols],{1,-1},0.1,{2,1}]
Out[2]=
Contents cannot be rendered at this time; please try again later
​
Use thicker lines, coloured differently for each coil primitive (wires with the same
χ
c
,
ψ
c
, and
i
χ
) to better distinguish between them:
In[1]:=
sol=First@
FindEllipseCoil
[{1,-1,1},{1,1},{0.1,1.32},{0.1,0.5}]
Out[1]=
{Coilχc[1]0.404902,Coilχc[2]0.634479,Coilχc[3]0.923345,Coilψc[1]0.367712,Coilψc[2]0.443897,Coilψc[3]0.49795,DesToErr62.09}
In[2]:=
EllipseCoilPlot
[sol,{1,-1,1},1,{1,1},"ThicknessScaling"0.0025,PlotStyleAutomatic]
Out[2]=
Contents cannot be rendered at this time; please try again later
​
The azimuthal periodicity of higher-degree field harmonics may be matched via construction of the elliptical basis. For example, the
B
2, 2
field harmonic is generated by ellipses with two-fold azimuthal symmetry:
In[1]:=
EllipseCoilPlot
[{{.71,.49}},{1},1,{2,2},"ArrowheadScaling"0.01]
Out[1]=
Contents cannot be rendered at this time; please try again later

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com