Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CreateCoil

Guides

  • Creating Coils

Tech Notes

  • Physics of Creating Simple, Discrete Coils

Symbols

  • DesToErr
  • EllipseCoilPlot3D
  • EllipseCoilPlot
  • EllipseFieldPlot2D
  • EllipseFieldPlot
  • FindEllipseCoil
  • FindLoopCoil
  • FindSaddleCoilAxial
  • FindSaddleCoilAzimuthal
  • FindSaddleCoil
  • HarmonicFieldPlot
  • LoopCoilPlot3D
  • LoopCoilPlot
  • LoopFieldPlot2D
  • LoopFieldPlot
  • SaddleCoilPlot3D
  • SaddleCoilPlot
  • SaddleFieldPlot2D
  • SaddleFieldPlot
NoahH`CreateCoil`
FindSaddleCoilAxial
​
FindSaddleCoilAxial[{
i
χ1
,
i
χ2
,…},{n,m},
k
ϕ
,{
χ
cmin
,
χ
cmax
}]
returns, for arc groups of turn ratios
i
χ1
,
i
χ2
,
…
and with
k
ϕ
azimuthal extents per saddle, axial separations between
χ
c min
and
χ
c max
optimised to generate the field harmonic of order
n
and degree
m
.
​
Details and Options

Examples  
(14)
Basic Examples  
(1)
Optimise a pair of arc groups to generate the
B
1, 1
(i.e.
n=1
,
m=1
) field harmonic, with a normalised separation between 0.01 and 3, and with one azimuthal extent per saddle:
In[1]:=
FindSaddleCoilAxial
[{1},{1,1},1,{.01,3}]
Out[1]=
{{Coilχc[1]2.,DesToErr542.649}}
See
FindSaddleCoil
for an example on how to generate saddle coils with optimised axial separations and azimuthal extents.
Generalizations & Extensions  
(1)

Options  
(9)

Properties & Relations  
(1)

Possible Issues  
(1)

Neat Examples  
(1)

SeeAlso
FindRoot
 
▪
SaddleFieldPlot
 
▪
SaddleFieldPlot2D
 
▪
SaddleCoilPlot
 
▪
HarmonicFieldPlot
 
▪
FindSaddleCoilAzimuthal
 
▪
FindSaddleCoil
TechNotes
▪
Physics of Creating Simple, Discrete Coils
RelatedGuides
▪
Creating Coils
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com