Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Interpolate data using polyharmonic splines
ResourceFunction["PolyharmonicSplineInterpolation"][{f1,f2,…}] constructs a polyharmonic spline interpolation of the function values fi, assumed to correspond to x values 1, 2, …. | |
ResourceFunction["PolyharmonicSplineInterpolation"][{{x1,f1},{x2,f2},…}] constructs a polyharmonic spline interpolation of the function values fi corresponding to x values xi. | |
ResourceFunction["PolyharmonicSplineInterpolation"][{{{x1,y1,…},f1},{{x2,y2,…},f2},…}] constructs a polyharmonic spline interpolation of multidimensional data. |
Construct an approximate function that interpolates the data:
In[1]:= |
Apply the function to find interpolated values:
In[2]:= |
Out[2]= |
Plot the interpolation function:
In[3]:= |
Out[3]= |
Compare with the original data:
In[4]:= |
Out[4]= |
Interpolate between points at arbitrary x-values:
In[5]:= |
Out[5]= |
Create a list of multidimensional data:
In[6]:= |
Out[6]= |
Create a compiled interpolating function:
In[7]:= |
Plot the interpolating function:
In[8]:= |
Out[8]= |
Interpolate complex values:
In[9]:= |
Plot it:
In[10]:= |
Out[10]= |
Create a list of scattered data:
In[11]:= |
Create a compiled interpolating function:
In[12]:= |
Plot the interpolating function:
In[13]:= |
Out[13]= |
Create a vector-valued function of one variable from vector-valued data:
In[14]:= |
The value is a vector:
In[15]:= |
Out[15]= |
Plot both components:
In[16]:= |
Out[16]= |
Create a vector-valued function of two variables from vector-valued data:
In[17]:= |
The value is a vector:
In[18]:= |
Out[18]= |
Plot3D will show all three components:
In[19]:= |
Out[19]= |
A single component may be plotted using Indexed:
In[20]:= |
Out[20]= |
Use Compiled→True to generate a compiled function from machine precision data:
In[21]:= |
Out[21]= |
A compiled function evaluates more quickly than an uncompiled one:
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
Compiled→False is appropriate for data with arbitrary precision:
In[24]:= |
Out[24]= |
Compare interpolating functions of different orders:
In[25]:= |
Out[25]= |
The interpolating function always goes through the data points:
In[26]:= |
Out[26]= |
This work is licensed under a Creative Commons Attribution 4.0 International License