Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Smooth curve interpolation based on local procedures for a multiple-valued curve
ResourceFunction["AkimaSpline"][{x1,y1},{x2,y2},…}] represents an Akima-spline function defined by the data {xi, yi}. |
Construct an Akima-spline curve using a list of data points:
| In[1]:= |
| In[2]:= |
| Out[2]= |
Apply the function to find a point on the curve:
| In[3]:= |
| Out[3]= |
Plot the Akima-spline curve with the data points:
| In[4]:= |
| Out[4]= | ![]() |
Ordinate values can be repeated:
| In[5]:= |
| In[6]:= |
Plot the Akima-spline curve with the data points:
| In[7]:= |
| Out[7]= | ![]() |
| In[8]:= |
| In[9]:= |
| Out[9]= |
Plot the Akima-spline curve with the data points:
| In[10]:= |
| Out[10]= | ![]() |
Interpolate random data:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= | ![]() |
Sort the points into a traveling salesman tour:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= | ![]() |
Interesting knot-like figures can be drawn:
| In[16]:= | ![]() |
| Out[18]= | ![]() |
A “braided” Spikey:
| In[19]:= |
| In[20]:= | ![]() |
| Out[22]= | ![]() |
| In[23]:= | ![]() |
| In[24]:= |
| Out[24]= | ![]() |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License