Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Smooth curve interpolation based on local procedures for a multiple-valued curve
ResourceFunction["AkimaSpline"][{x1,y1},{x2,y2},…}] represents an Akima-spline function defined by the data {xi, yi}. |
Construct an Akima-spline curve using a list of data points:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Apply the function to find a point on the curve:
In[3]:= | ![]() |
Out[3]= | ![]() |
Plot the Akima-spline curve with the data points:
In[4]:= | ![]() |
Out[4]= | ![]() |
Ordinate values can be repeated:
In[5]:= | ![]() |
In[6]:= | ![]() |
Plot the Akima-spline curve with the data points:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Plot the Akima-spline curve with the data points:
In[10]:= | ![]() |
Out[10]= | ![]() |
Interpolate random data:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Sort the points into a traveling salesman tour:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Interesting knot-like figures can be drawn:
In[16]:= | ![]() |
Out[18]= | ![]() |
A “braided” Spikey:
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[22]= | ![]() |
In[23]:= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License