Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Interpolation and smooth curve fitting based on local procedures
ResourceFunction["AkimaInterpolation"][{f1,f2,…}] constructs an interpolation of the function values fi, assumed to correspond to x values of 1,2,…, using Akima’s method. | |
ResourceFunction["AkimaInterpolation"][{{x1,f1},{x2,f2},…}] constructs an interpolation of the function values fi corresponding to x values xi. |
Construct an approximate function that interpolates the data:
In[1]:= |
Out[2]= |
Apply the function to find interpolated values:
In[3]:= |
Out[3]= |
Plot the interpolation function:
In[4]:= |
Out[4]= |
Compare with the original data:
In[5]:= |
Out[5]= |
Interpolate between points at arbitrary x-values:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
With PeriodicInterpolation→True, the data are interpreted as one period of a periodic function:
In[8]:= |
Out[9]= |
Periodic interpolation can be used outside the range of the data:
In[10]:= |
Out[10]= |
Interpolate random data:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
Compare the output from AkimaInterpolation to that from Interpolation:
In[13]:= |
Out[14]= |
Examine the region between 4 and 6:
In[15]:= |
Out[15]= |
Extrapolation is attempted to go beyond the original data:
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
At least 2 points are needed:
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
The interpolation function will always be continuous and first-order differentiable, but may not be higher-order differentiable:
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
Excessive undulation is suppressed:
In[22]:= |
Out[23]= |
Reasonable extrapolation is permitted:
In[24]:= |
Out[28]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License