Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearQuadraticControl

Guides

  • ZigangPan`LinearQuadraticControl`

Symbols

  • HinfinityControl
  • HinfinityControlPSM
  • LEQGcontrol
  • LEQGcontrolPSM
  • LEQGcost
  • LQGcontrol
  • LQRcontrol
  • nusmoiaQ
  • twoslicesalgorithm
ZigangPan`LinearQuadraticControl`
LEQGcost
​
LEQGcost
[system,θ]
calculates the LEQG cost of the LTI
system
with all the disturbance inputs as independent Wiener processes and all of the control inputs are ignored; the measurement outputs are ignored and the controlled outputs as the signal whose long term average of exponentiated energy (with risk-sensitivity parameter θ) is the cost function. If
system
is open-loop unstable, then the program returns 'error'. If the
system
is open-loop stable but optimal cost is ∞, then the program returns {∞,θstar}, where θstar is the supremum of θ's such that the optimal cost is finite. If the
system
is open-loop stable and the optimal cost is finite, then the program returns the optimal cost.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system1={{x1,x2,x3},{u1,u2,w1,w2,w3},{y1,y2,z1,z2,z3,z4},{{-1,1,-1,0,0,1,-1,1},{-2,0,1,1,-1,0,0,1},{-3,0,-2,1,1,1,1,0},{1,0,0,0,0,1,0,0},{0,0,1,0,0,0,1,0},{1,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0},{0,0,0,1,2,0,0,0},{0,0,0,2,1,0,0,0}},{1,2},{1,2},{1,2},{3,4,5},{1,2},{3,4,5,6}};systemcheck[system1]
Out[1]=
True
In[2]:=
stablizabilityQ[system1〚4〛〚1;;3,1;;3〛,system1〚4〛〚1;;3,4;;5〛]
Out[2]=
True
In[3]:=
detectabilityQ[system1〚4〛〚1;;3,1;;3〛,system1〚4〛〚4;;5,1;;3〛]
Out[3]=
True
In[4]:=
{z,controller}=
LQGcontrol
[system1]
Out[4]=
{8.91665,{{x1chk,x2chk,x3chk},{y1,y2},{u1,u2},{{-2.32238,1.,0.234439,1.32238,-1.23444},{-3.0763,-1.30056,1.36451,0.224204,-0.0261179},{-3.58715,0.0375991,-3.40869,0.765561,1.28946},{-0.336843,-0.631483,0.109582,0,0},{0.515253,0.669082,-0.228809,0,0}},{1,2},{1,2},{1,2},{},{1,2},{}}}
In[5]:=
clsystem=systemfeedback[system1,controller];
In[6]:=
LEQGcost
[clsystem,0]
Use LEQGcontrolPSM or LEQGcontrol to calculate the optimal cost and controller under feedback!
The LTI system is asymptotically stable and the LEQG cost is finite. The cost is returned as the output of this calculation.
Out[6]=
8.916649079853430956990532991590453878190570621171
SeeAlso
LEQGcontrolPSM
 
▪
LEQGcontrol
 
▪
HinfinityControlPSM
 
▪
HinfinityControl
RelatedGuides
▪
ZigangPan`LinearQuadraticControl`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com