Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearQuadraticControl

Guides

  • ZigangPan`LinearQuadraticControl`

Symbols

  • HinfinityControl
  • HinfinityControlPSM
  • LEQGcontrol
  • LEQGcontrolPSM
  • LEQGcost
  • LQGcontrol
  • LQRcontrol
  • nusmoiaQ
  • twoslicesalgorithm
ZigangPan`LinearQuadraticControl`
HinfinityControlPSM
​
HinfinityControlPSM[system,γ]
considers the H-infinity optimal control problem under perfect state measurements. It calculates the solution to the associated algebraic Riccati equation and the optimal state feedback controller for the LTI
system
with all of the control inputs as control inputs and all of the disturbance inputs as disturbance inputs; the measurement outputs are ignored and the controlled outputs as the signal whose squared energy minus
2
γ
times the squared energy of the disturnbance on the interval [0,∞) is the cost function. Under regularity assumptions, the algorithm returns
{z,controllergain}
if
γ
is greater than the optimal disturbance attenuation level under perfect state measurements, where
z
is the solution to the corresponding algebraic Riccati equation, and
controllergain
is the optimal state feedback gain matrix of the controller. Under regularity assumptions, if
γ
is less than the optimal disturbance attenuation level, then the algorithm returns the
γstar
, which is the optimal disturbance attenuation level of the problem under perfect state measurements.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system1={{x1,x2,x3},{u1,u2,w1,w2,w3},{y1,y2,z1,z2,z3,z4},{{-1,1,-1,0,0,0,0,1},{-2,0,1,1,-1,0,0,1},{-3,0,-2,1,1,0,0,0},{1,0,0,0,0,1,0,0},{0,0,1,0,0,0,1,0},{1,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0},{0,0,0,1,2,0,0,0},{0,0,0,2,1,0,0,0}},{1,2},{1,2},{1,2},{3,4,5},{1,2},{3,4,5,6}};systemcheck[system1]
Out[1]=
True
In[2]:=
HinfinityControlPSM
[system1,1]
No stabilizing solution found!
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Out[2]=
49451
32768
In[3]:=
N[%]
Out[3]=
1.50912
In[4]:=
HinfinityControlPSM
[system1,1.6]
Out[4]=
{{{7.6810428075306447226466843858361244201660156250000,4.6795828475380378819181714789010584354400634765625,-3.2594354311013562508492213964927941560745239257813},{4.6795828475380378819181714789010584354400634765625,4.5873618928235497804735132376663386821746826171875,-1.9171893912159529982375261170091107487678527832031},{-3.2594354311013562508492213964927941560745239257813,-1.9171893912159529982375261170091107487678527832031,1.5643059830123360320897063502343371510505676269531}},{{-4.3174233551934427429349246570685257514317830403646,-4.3743408493551105584471214468875485989782545301649,1.7433776153256934391164476336497399542066786024306},{5.0417423398826330209014183007335911194483439127604,4.8003829362919890024999050284451287653711107042101,-2.0910011671062125573586046003684815433290269639757}}}
SeeAlso
HinfinityControl
 
▪
LEQGcontrolPSM
 
▪
LEQGcost
 
▪
LEQGcontrol
RelatedGuides
▪
ZigangPan`LinearQuadraticControl`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com