Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LinearQuadraticControl
Guides
ZigangPan`LinearQuadraticControl`
Symbols
HinfinityControl
HinfinityControlPSM
LEQGcontrol
LEQGcontrolPSM
LEQGcost
LQGcontrol
LQRcontrol
nusmoiaQ
twoslicesalgorithm
ZigangPan`LinearQuadraticControl`
L
E
Q
G
c
o
n
t
r
o
l
L
E
Q
G
c
o
n
t
r
o
l
[
s
y
s
t
e
m
,
θ
]
c
a
l
c
u
l
a
t
e
s
t
h
e
o
p
t
i
m
a
l
p
e
r
f
o
r
m
a
n
c
e
l
e
v
e
l
a
n
d
t
h
e
o
p
t
i
m
a
l
o
u
t
p
u
t
f
e
e
d
b
a
c
k
c
o
n
t
r
o
l
l
e
r
f
o
r
t
h
e
L
T
I
s
y
s
t
e
m
w
i
t
h
a
l
l
o
f
t
h
e
c
o
n
t
r
o
l
i
n
p
u
t
s
a
s
c
o
n
t
r
o
l
i
n
p
u
t
s
a
n
d
a
l
l
o
f
t
h
e
d
i
s
t
u
r
b
a
n
c
e
i
n
p
u
t
s
a
s
i
n
d
e
p
e
n
d
e
n
t
W
i
e
n
e
r
p
r
o
c
e
s
s
e
s
;
t
h
e
m
e
a
s
u
r
e
m
e
n
t
o
u
t
p
u
t
s
a
s
t
h
e
m
e
a
s
u
r
e
m
e
n
t
o
u
t
p
u
t
s
a
n
d
t
h
e
c
o
n
t
r
o
l
l
e
d
o
u
t
p
u
t
s
a
s
t
h
e
s
i
g
n
a
l
w
h
o
s
e
l
o
n
g
t
e
r
m
a
v
e
r
a
g
e
o
f
e
x
p
o
n
e
n
t
i
a
t
e
d
e
n
e
r
g
y
(
w
i
t
h
r
i
s
k
-
s
e
n
s
i
t
i
v
i
t
y
p
a
r
a
m
e
t
e
r
θ
)
i
s
t
h
e
c
o
s
t
f
u
n
c
t
i
o
n
.
U
n
d
e
r
r
e
g
u
l
a
r
i
t
y
a
s
s
u
m
p
t
i
o
n
s
,
t
h
e
a
l
g
o
r
i
t
h
m
r
e
t
u
r
n
s
{
c
o
s
t
,
c
o
n
t
r
o
l
l
e
r
}
i
f
t
h
e
o
p
t
i
m
a
l
p
e
r
f
o
r
m
a
n
c
e
l
e
v
e
l
i
s
f
i
n
i
t
e
,
w
h
e
r
e
t
h
e
c
o
s
t
i
s
t
h
e
o
p
t
i
m
a
l
p
e
r
f
o
r
m
a
n
c
e
l
e
v
e
l
o
f
t
h
e
s
y
s
t
e
m
u
n
d
e
r
i
m
p
e
r
f
e
c
t
s
t
a
t
e
m
e
a
s
u
r
e
m
e
n
t
s
,
a
n
d
c
o
n
t
r
o
l
l
e
r
i
s
t
h
e
L
T
I
r
e
p
r
e
s
e
n
t
a
t
i
o
n
o
f
t
h
e
o
p
t
i
m
a
l
o
u
t
p
u
t
f
e
e
d
b
a
c
k
c
o
n
t
r
o
l
l
e
r
.
U
n
d
e
r
r
e
g
u
l
a
r
i
t
y
a
s
s
u
m
p
t
i
o
n
s
,
i
f
t
h
e
o
p
t
i
m
a
l
p
e
r
f
o
r
m
a
n
c
e
l
e
v
e
l
i
s
n
o
t
f
i
n
i
t
e
,
t
h
e
n
t
h
e
a
l
g
o
r
i
t
h
m
r
e
t
u
r
n
s
θ
s
t
a
r
,
w
h
i
c
h
i
s
t
h
e
s
u
p
r
e
m
u
m
o
f
a
l
l
r
i
s
k
-
s
e
n
s
i
t
i
v
i
t
y
p
a
r
a
m
e
t
e
r
s
s
u
c
h
t
h
a
t
t
h
e
o
p
t
i
m
a
l
p
e
r
f
o
r
m
a
n
c
e
l
e
v
e
l
i
s
f
i
n
i
t
e
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
s
y
s
t
e
m
1
=
{
{
x
1
,
x
2
,
x
3
}
,
{
u
1
,
u
2
,
w
1
,
w
2
,
w
3
}
,
{
y
1
,
y
2
,
z
1
,
z
2
,
z
3
,
z
4
}
,
{
{
-
1
,
1
,
-
1
,
0
,
0
,
0
,
0
,
1
}
,
{
-
2
,
0
,
1
,
1
,
-
1
,
0
,
0
,
1
}
,
{
-
3
,
0
,
-
2
,
1
,
1
,
0
,
0
,
0
}
,
{
1
,
0
,
0
,
0
,
0
,
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
,
0
,
0
,
1
,
0
}
,
{
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
}
,
{
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
}
,
{
0
,
0
,
0
,
1
,
2
,
0
,
0
,
0
}
,
{
0
,
0
,
0
,
2
,
1
,
0
,
0
,
0
}
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
3
,
4
,
5
}
,
{
1
,
2
}
,
{
3
,
4
,
5
,
6
}
}
;
s
y
s
t
e
m
c
h
e
c
k
[
s
y
s
t
e
m
1
]
O
u
t
[
1
]
=
T
r
u
e
I
n
[
2
]
:
=
c
o
n
t
r
o
l
l
a
b
i
l
i
t
y
Q
a
n
d
i
n
d
i
c
e
s
[
s
y
s
t
e
m
1
〚
4
〛
〚
1
;
;
3
,
1
;
;
3
〛
,
s
y
s
t
e
m
1
〚
4
〛
〚
1
;
;
3
,
4
;
;
5
〛
]
O
u
t
[
2
]
=
T
r
u
e
,
3
,
{
1
,
2
}
,
-
1
4
,
1
2
,
1
2
,
-
1
2
,
0
,
0
,
1
2
,
-
1
2
,
1
2
I
n
[
3
]
:
=
o
b
s
e
r
v
a
b
i
l
i
t
y
Q
a
n
d
i
n
d
i
c
e
s
[
s
y
s
t
e
m
1
〚
4
〛
〚
1
;
;
3
,
1
;
;
3
〛
,
s
y
s
t
e
m
1
〚
4
〛
〚
4
;
;
5
,
1
;
;
3
〛
]
O
u
t
[
3
]
=
{
T
r
u
e
,
3
,
{
2
,
1
}
,
{
{
1
,
0
,
0
}
,
{
0
,
1
,
1
}
,
{
0
,
0
,
1
}
}
}
I
n
[
4
]
:
=
{
z
,
c
o
n
t
r
o
l
l
e
r
}
=
L
E
Q
G
c
o
n
t
r
o
l
[
s
y
s
t
e
m
1
,
0
]
O
u
t
[
4
]
=
{
6
.
4
0
6
5
6
2
6
5
0
2
1
2
1
7
6
8
5
2
6
9
3
1
3
0
8
2
4
7
5
8
4
9
4
5
0
6
8
1
6
2
6
5
3
6
7
4
4
0
,
{
{
x
1
c
h
k
,
x
2
c
h
k
,
x
3
c
h
k
}
,
{
y
1
,
y
2
}
,
{
u
1
,
u
2
}
,
{
{
-
1
.
9
0
8
1
9
1
6
7
9
1
6
0
5
9
2
8
1
1
0
9
9
3
3
4
4
5
3
5
0
1
1
8
3
8
6
6
7
1
9
2
0
3
5
8
3
9
7
0
7
2
,
1
,
-
0
.
3
4
5
5
2
9
2
1
8
8
0
4
0
1
5
8
6
8
7
9
0
9
7
9
1
8
7
5
3
6
1
1
7
8
5
8
5
9
8
7
7
5
8
4
1
7
7
9
2
8
,
0
.
9
0
8
1
9
1
6
7
9
1
6
0
5
9
2
8
1
1
0
9
9
3
3
4
4
5
3
5
0
1
1
8
3
8
6
6
7
1
9
2
0
3
5
8
3
9
7
0
7
2
,
-
0
.
6
5
4
4
7
0
7
8
1
1
9
5
9
8
4
1
3
1
2
0
9
0
2
0
8
1
2
4
6
3
8
8
2
1
4
1
4
0
1
2
2
4
1
5
8
2
2
0
7
2
}
,
{
-
3
.
2
3
2
3
8
8
8
3
7
8
3
8
4
6
3
6
1
0
2
0
4
4
3
3
1
7
5
4
7
4
6
3
8
6
6
3
7
1
4
0
6
0
1
6
4
7
6
5
1
,
-
1
.
3
0
0
5
6
4
7
0
4
2
2
3
0
3
2
6
0
1
0
5
6
8
9
4
2
7
5
3
0
8
4
0
3
4
5
8
6
0
2
1
4
7
6
6
1
6
3
4
7
,
0
.
9
1
6
4
9
6
5
1
1
5
5
7
1
6
6
7
3
4
2
6
8
3
4
6
6
7
3
3
0
8
0
9
3
6
3
7
3
6
0
5
2
2
1
8
0
5
2
0
6
,
0
.
3
8
0
2
9
2
9
6
2
7
3
2
5
1
8
1
2
3
0
8
6
0
2
2
2
7
4
8
5
4
8
5
1
4
1
1
5
3
1
5
4
7
0
9
5
6
0
6
9
1
,
0
.
4
2
1
8
9
4
9
8
2
2
3
4
1
5
2
2
9
5
8
6
3
3
3
3
2
4
4
0
0
5
8
5
2
5
8
2
9
0
7
8
8
6
9
5
8
9
9
4
7
9
}
,
{
-
2
.
1
6
7
1
1
8
4
1
7
9
8
6
7
0
6
0
4
3
8
7
3
5
4
9
0
6
5
4
9
0
3
6
1
1
5
4
4
9
7
1
2
4
7
6
6
5
8
8
8
,
0
.
0
3
7
5
9
9
0
5
4
8
6
5
7
0
2
1
1
4
4
5
9
0
7
5
5
4
6
3
6
8
2
1
6
2
4
6
6
9
6
4
8
9
9
0
4
3
9
0
6
,
-
2
.
8
5
7
5
6
4
4
4
3
6
5
0
7
3
3
7
9
7
1
6
0
7
2
0
5
0
1
3
6
8
1
0
3
7
6
8
2
7
7
5
9
2
8
1
7
1
4
6
6
,
-
0
.
6
5
4
4
7
0
7
8
1
1
9
5
9
8
4
1
3
1
2
0
9
0
2
0
8
1
2
4
6
3
8
8
2
1
4
1
4
0
1
2
2
4
1
5
8
2
2
0
7
2
,
0
.
7
3
8
3
3
7
5
7
6
6
5
7
8
9
3
1
8
7
9
1
9
8
9
2
7
1
4
7
9
6
0
1
4
6
0
4
7
5
9
2
4
7
0
7
4
8
3
6
8
8
}
,
{
-
0
.
3
3
6
8
4
2
5
3
7
1
4
4
3
1
7
8
3
1
1
0
0
4
9
0
3
8
9
2
8
7
0
1
5
2
7
4
0
4
0
4
3
0
9
9
6
9
8
3
9
,
-
0
.
6
3
1
4
8
2
8
2
4
6
7
8
6
6
5
2
4
3
2
9
8
9
0
9
3
6
4
4
7
0
0
9
3
6
0
5
9
5
2
8
2
8
8
7
8
6
2
2
0
5
,
0
.
1
0
9
5
8
2
3
1
3
3
9
9
2
3
9
2
1
0
4
4
5
4
2
6
0
6
5
3
7
0
9
2
8
5
2
8
3
7
5
0
3
1
6
9
8
6
0
2
8
7
,
0
,
0
}
,
{
0
.
5
1
5
2
5
3
3
3
7
9
6
1
6
2
7
6
5
6
0
1
7
9
2
0
5
1
1
3
3
2
7
7
1
9
7
8
1
4
2
0
8
2
0
7
2
1
7
4
3
,
0
.
6
6
9
0
8
1
8
7
9
5
4
4
3
6
7
3
5
7
7
5
7
9
8
4
9
1
0
8
3
8
3
0
9
8
5
2
6
4
9
3
1
8
7
8
3
0
1
2
6
5
,
-
0
.
2
2
8
8
0
9
1
8
0
3
9
2
0
7
9
8
1
9
6
8
6
2
5
3
8
5
1
9
4
3
0
1
7
6
9
1
8
9
3
3
7
7
4
4
0
9
1
2
5
4
,
0
,
0
}
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
}
I
n
[
5
]
:
=
L
E
Q
G
c
o
n
t
r
o
l
[
s
y
s
t
e
m
1
,
1
]
N
o
s
t
a
b
i
l
i
z
i
n
g
s
o
l
u
t
i
o
n
f
o
u
n
d
!
0
1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
O
u
t
[
5
]
=
5
6
2
5
3
2
7
6
8
I
n
[
6
]
:
=
N
[
%
]
O
u
t
[
6
]
=
0
.
1
7
1
6
6
1
I
n
[
7
]
:
=
N
[
5
6
/
3
2
0
]
O
u
t
[
7
]
=
0
.
1
7
5
I
n
[
8
]
:
=
L
E
Q
G
c
o
n
t
r
o
l
[
s
y
s
t
e
m
1
,
1
/
6
]
O
u
t
[
8
]
=
{
1
4
8
.
6
9
9
0
6
4
8
4
3
0
9
5
9
7
2
8
2
9
6
8
6
2
1
7
3
3
8
8
8
5
5
7
2
0
5
2
4
0
5
3
7
8
1
4
4
8
,
{
{
x
1
c
h
k
,
x
2
c
h
k
,
x
3
c
h
k
}
,
{
y
1
,
y
2
}
,
{
u
1
,
u
2
}
,
{
{
-
1
.
8
3
6
4
6
5
5
9
4
8
7
8
6
7
6
0
6
9
5
3
8
4
5
3
3
3
0
3
3
0
2
5
0
8
1
1
1
9
3
6
3
8
5
1
1
6
4
2
5
,
1
,
-
0
.
3
8
3
3
9
7
1
3
2
5
0
5
1
6
2
4
1
2
1
5
0
5
7
2
8
4
6
1
1
0
3
0
4
4
7
2
1
8
8
7
1
3
6
6
8
7
0
2
7
8
,
1
.
0
0
3
7
5
8
7
1
3
8
5
4
4
1
1
2
8
3
4
4
6
1
4
3
9
9
6
3
9
6
3
0
0
9
7
3
4
3
2
3
6
6
2
1
3
9
7
0
9
,
-
0
.
7
3
9
9
2
3
4
4
0
9
9
3
8
0
5
1
0
5
4
1
9
3
1
2
5
8
4
6
6
7
6
3
4
6
3
3
3
7
3
5
4
3
5
9
7
5
5
6
6
6
}
,
{
-
4
6
.
8
9
9
7
9
8
7
8
4
3
7
0
9
7
7
1
8
5
6
1
4
8
4
8
9
1
6
3
7
1
1
7
7
1
8
0
0
5
5
6
4
1
4
8
9
9
0
,
-
2
3
.
8
6
4
5
3
8
0
0
4
6
9
1
1
6
5
9
5
0
2
8
8
6
5
7
2
5
0
2
8
4
6
5
0
2
4
6
6
8
9
9
9
0
0
6
6
7
6
,
2
0
.
9
5
7
0
7
4
2
5
1
5
3
0
5
5
2
5
6
9
8
7
8
6
0
4
5
6
4
2
9
4
7
8
5
8
1
1
2
9
5
6
9
4
2
3
8
3
2
,
0
.
4
1
1
7
5
9
5
4
5
4
3
1
7
6
2
3
8
4
6
0
5
8
5
9
5
1
7
6
7
5
9
8
6
4
9
5
4
1
4
3
1
8
4
1
6
2
8
9
9
1
,
0
.
4
9
7
1
4
2
7
8
9
2
7
1
2
7
1
0
0
1
0
4
1
9
0
2
8
3
1
2
9
6
3
5
3
2
3
2
0
7
6
4
4
9
8
4
3
2
5
8
2
9
}
,
{
2
.
3
2
5
7
8
9
8
7
7
1
5
9
4
0
1
2
6
8
9
9
8
4
3
4
5
9
4
3
8
0
7
9
3
0
2
6
8
7
1
5
5
8
0
4
5
7
5
,
2
.
2
6
3
4
8
4
4
3
4
3
6
1
8
4
5
7
4
8
6
0
1
5
0
2
6
2
1
1
5
2
7
8
6
6
8
5
7
0
6
6
0
0
2
7
1
2
3
,
-
4
.
9
1
3
1
5
9
7
4
9
5
9
1
9
0
3
2
9
0
7
6
3
0
7
2
3
2
1
3
3
1
3
0
3
0
4
5
3
0
4
6
6
5
5
1
9
3
6
,
-
0
.
7
3
9
9
2
3
4
4
0
9
9
3
8
0
5
1
0
5
4
1
9
3
1
2
5
8
4
6
6
7
6
3
4
6
3
3
3
7
3
5
4
3
5
9
7
5
5
6
6
6
,
0
.
8
4
6
5
3
0
7
7
5
5
5
4
6
2
0
2
0
8
1
1
1
3
7
3
5
3
6
3
6
1
8
7
8
4
9
1
6
1
0
9
6
9
4
2
7
5
6
3
5
6
}
,
{
-
1
9
.
9
2
3
7
3
9
4
1
0
0
8
9
9
7
2
4
2
5
3
1
3
8
1
2
6
0
5
5
7
5
0
4
5
4
6
7
4
0
8
3
8
5
5
4
7
6
1
,
-
1
0
.
8
0
0
5
2
6
7
8
5
1
6
4
6
6
0
1
0
0
8
4
3
5
7
7
3
1
4
5
6
5
9
3
1
7
8
0
4
9
1
6
9
4
8
9
7
7
7
,
9
.
0
8
1
8
2
1
2
3
6
3
1
3
4
4
5
9
7
6
7
0
4
9
6
4
6
0
8
0
0
6
0
0
4
6
0
1
1
9
8
6
0
5
7
2
2
3
1
8
,
0
,
0
}
,
{
2
4
.
6
3
2
9
2
6
4
1
9
7
5
4
5
3
6
1
0
6
4
6
2
8
2
0
0
4
6
0
6
6
1
4
2
9
6
6
4
6
8
6
5
7
2
6
2
0
5
,
1
3
.
0
6
4
0
1
1
2
1
9
5
2
6
5
0
5
8
4
9
4
4
5
0
7
9
9
3
5
7
1
8
7
1
8
4
6
6
1
9
8
2
9
5
1
6
8
9
9
,
-
1
1
.
2
8
9
5
3
8
6
7
2
9
4
3
1
6
5
7
6
0
7
0
8
5
5
8
9
8
2
3
6
9
0
7
5
5
7
0
1
6
0
7
9
6
7
1
8
7
1
,
0
,
0
}
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
}
S
e
e
A
l
s
o
L
E
Q
G
c
o
n
t
r
o
l
P
S
M
▪
H
i
n
f
i
n
i
t
y
C
o
n
t
r
o
l
▪
L
E
Q
G
c
o
s
t
▪
H
i
n
f
i
n
i
t
y
C
o
n
t
r
o
l
P
S
M
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
Z
i
g
a
n
g
P
a
n
`
L
i
n
e
a
r
Q
u
a
d
r
a
t
i
c
C
o
n
t
r
o
l
`
"
"