Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearQuadraticControl

Guides

  • ZigangPan`LinearQuadraticControl`

Symbols

  • HinfinityControl
  • HinfinityControlPSM
  • LEQGcontrol
  • LEQGcontrolPSM
  • LEQGcost
  • LQGcontrol
  • LQRcontrol
  • nusmoiaQ
  • twoslicesalgorithm
ZigangPan`LinearQuadraticControl`
HinfinityControl
​
HinfinityControl[system,γ]
considers the H-infinity optimal control problem under imperfect state measurements (which is the four block problem). It calculates the solution to the algebraic Riccati equation associated with the full information problem and the optimal output feedback controller for the LTI
system
with all of the control inputs as control inputs and all of the disturbance inputs as disturbance inputs; the measurement outputs as measurement outputs and the controlled outputs as the signal whose squared energy minus
2
γ
times the squared energy of the disturbance on the interval [0,∞) is the cost function. Under regularity assumptions, the algorithm returns
{cost,controller}
if γ is greater than the optimal disturbance attenuation level under imperfect state measurements, where
cost
is the solution to the corresponding algebraic Riccati equation for the full information problem that results from the application of the cost-to-come function analysis, and
controller
is the LTI representation of the optimal output feedback controller. Under regularity assumptions, if
γ
is less than the optimal disturbance attenuation level, then the algorithm returns the
γstar
, which is the optimal disturbance attenuation level of the problem under imperfect state measurements. When regularity assumptions are not satisfied, the algorithm returns
{cost,controller}
if there exists a solution to the problem for the chosen
γ
.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system1={{x1,x2,x3},{u1,u2,w1,w2,w3},{y1,y2,z1,z2,z3,z4},{{-1,1,-1,0,0,0,0,1},{-2,0,1,1,-1,0,0,1},{-3,0,-2,1,1,0,0,0},{1,0,0,0,0,1,0,0},{0,0,1,0,0,0,1,0},{1,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0},{0,0,0,1,2,0,0,0},{0,0,0,2,1,0,0,0}},{1,2},{1,2},{1,2},{3,4,5},{1,2},{3,4,5,6}};systemcheck[system1]
Out[1]=
True
In[2]:=
HinfinityControl
[system1,1]
No stabilizing solution found!
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Out[2]=
79089
32768
In[3]:=
N[%]
Out[3]=
2.4136
In[4]:=
HinfinityControl
[system1,2.5]
Out[4]=
{{{20.1161,9.29619,-9.25448},{9.29619,5.40086,-4.21781},{-9.25448,-4.21781,4.44345}},{{x1chk,x2chk,x3chk},{y1,y2},{u1,u2},{{-1.83943,1.,-0.381801,0.99932577855524140630905094440095126628875732421875,-0.73595125608594835764364461283548735082149505615234},{-20.937,-10.8017,9.02097,0.41029055293749294719418685417622327804565429687500,0.49362120201764186910864395940734539180994033813477},{-0.325249,0.937291,-3.69428,-0.73595125608594835764364461283548735082149505615234,0.84148531050986496993004948308225721120834350585938},{-8.26791,-4.93222,3.72409,0,0},{10.3245,5.86951,-4.71152,0,0}},{1,2},{1,2},{1,2},{},{1,2},{}}}
In[5]:=
myPositiveDefiniteMatrixQ[%〚1〛]
Out[5]=
True
SeeAlso
HinfinityControlPSM
 
▪
LEQGcontrol
 
▪
LEQGcontrolPSM
 
▪
LEQGcost
 
▪
LQGcontrol
RelatedGuides
▪
ZigangPan`LinearQuadraticControl`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com