Wolfram Language Paclet Repository
Community-contributed installable additions to the Wolfram Language
returns equivalent postions of given coordinates | |
returns equivalent reflections of given Miller indices | |
check whether two or more reflections are equivalent | |
returns the symmetry operations of a given group |
$SpaceGroups |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SymmetryEquivalentPositions |
Symbol | |
SymmetryEquivalentPositions[group,{x,y,z}] returns a list of coordinates that are equivalent to {x,y,z} group x 1 y 1 z 1 x 2 y 2 z 2 {x,i,z} i group | |
SymmetryEquivalentPositions |
SymmetryEquivalentPositions |
SymmetryEquivalentPositions |
SymmetryEquivalentPositions |
SymmetryEquivalentPositions |
SymmetryEquivalentReflections |
GetLaueClass |
GetSymmetryOperations |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 |
1 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
-1 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
1 | -1 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 |
-1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
-1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
1 | -1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 |
-1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
-1 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
1 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |