Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MaXrd
Guides
MaXrd – Mathematica X-ray diffraction package
Tech Notes
Applying crystal data
Basic computations
Computations on reflections
Formulas in crystallography
Importing crystal data
Quick guide to conditions
References
Symmetry calculations
The association structure of crystallographic data
Using the rotation options
Symbols
AttenuationCoefficient
BraggAngle
ConstructDomains
CrystalDensity
CrystalFormulaUnits
CrystalPlot
DarwinWidth
DistortStructure
DomainPlot
EmbedStructure
ExpandCrystal
ExportCrystalData
ExtinctionLength
FindPixelClusters
GetAtomCoordinates
GetAtomicScatteringFactors
GetCrystalMetric
GetElements
GetLatticeParameters
GetLaueClass
GetScatteringCrossSections
GetSymmetryData
GetSymmetryOperations
ImportCrystalData
InputCheck
InterplanarSpacing
MergeDomains
MergeSymmetryEquivalentReflections
MillerNotationToList
MillerNotationToString
ReciprocalImageCheck
ReciprocalSpaceSimulation
ReflectionList
RelatedFunctionsGraph
ResetCrystalData
ResizeStructure
SimulateDiffractionPattern
StructureFactor
StructureFactorTable
SymmetryEquivalentPositions
SymmetryEquivalentReflections
SymmetryEquivalentReflectionsQ
SynthesiseStructure
SystematicAbsentQ
ToStandardSetting
TransformAtomicDisplacementParameters
UnitCellTransformation
$CrystalData
$GroupSymbolRedirect
$LaueClasses
$MaXrdPath
$MaXrdVersion
$PeriodicTable
$PointGroups
$SpaceGroups
$TransformationMatrices
StianRamsnes`MaXrd`
G
e
t
S
y
m
m
e
t
r
y
D
a
t
a
G
e
t
S
y
m
m
e
t
r
y
D
a
t
a
[
g
r
o
u
p
,
l
a
b
e
l
]
e
x
t
r
a
c
t
s
t
h
e
d
a
t
a
a
s
s
o
c
i
a
t
e
d
w
i
t
h
l
a
b
e
l
f
r
o
m
t
h
e
g
i
v
e
n
p
o
i
n
t
-
o
r
s
p
a
c
e
g
r
o
u
p
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
5
)
Basic Examples
(
2
)
Query the data on for example
P
6
3
:
I
n
[
1
]
:
=
G
e
t
S
y
m
m
e
t
r
y
D
a
t
a
[
"
P
6
3
"
]
O
u
t
[
1
]
=
N
a
m
e
S
y
m
b
o
l
P
6
3
,
H
e
r
m
a
n
n
M
a
u
g
u
i
n
S
h
o
r
t
P
6
3
,
H
e
r
m
a
n
n
M
a
u
g
u
i
n
F
u
l
l
P
6
3
,
S
c
h
o
e
n
f
l
i
e
s
S
y
m
b
o
l
6
C
6
,
H
a
l
l
S
t
r
i
n
g
P
6
c
,
S
p
a
c
e
G
r
o
u
p
N
u
m
b
e
r
1
7
3
,
L
a
u
e
C
l
a
s
s
6
/
m
,
C
r
y
s
t
a
l
S
y
s
t
e
m
H
e
x
a
g
o
n
a
l
,
P
r
o
p
e
r
t
i
e
s
C
e
n
t
r
o
s
y
m
m
e
t
r
i
c
Q
F
a
l
s
e
,
S
o
h
n
c
k
e
G
r
o
u
p
Q
T
r
u
e
,
S
e
t
t
i
n
g
,
S
y
m
m
e
t
r
y
O
p
e
r
a
t
i
o
n
s
{
{
{
1
,
0
,
0
}
,
{
0
,
1
,
0
}
,
{
0
,
0
,
1
}
}
,
{
0
,
0
,
0
}
}
,
{
{
{
0
,
-
1
,
0
}
,
{
1
,
-
1
,
0
}
,
{
0
,
0
,
1
}
}
,
{
0
,
0
,
0
}
}
,
{
{
{
-
1
,
1
,
0
}
,
{
-
1
,
0
,
0
}
,
{
0
,
0
,
1
}
}
,
{
0
,
0
,
0
}
}
,
{
{
-
1
,
0
,
0
}
,
{
0
,
-
1
,
0
}
,
{
0
,
0
,
1
}
}
,
0
,
0
,
1
2
,
{
{
0
,
1
,
0
}
,
{
-
1
,
1
,
0
}
,
{
0
,
0
,
1
}
}
,
0
,
0
,
1
2
,
{
{
1
,
-
1
,
0
}
,
{
1
,
0
,
0
}
,
{
0
,
0
,
1
}
}
,
0
,
0
,
1
2
,
S
p
e
c
i
a
l
P
o
s
i
t
i
o
n
s
M
u
l
t
i
p
l
i
c
i
t
y
6
,
W
y
c
k
o
f
f
L
e
t
t
e
r
c
,
S
i
t
e
S
y
m
m
e
t
r
y
1
,
C
o
o
r
d
i
n
a
t
e
s
{
x
,
y
,
z
}
,
{
-
y
,
x
-
y
,
z
}
,
{
-
x
+
y
,
-
x
,
z
}
,
-
x
,
-
y
,
1
2
+
z
,
y
,
-
x
+
y
,
1
2
+
z
,
x
-
y
,
x
,
1
2
+
z
,
R
e
f
l
e
c
t
i
o
n
C
o
n
d
i
t
i
o
n
s
{
{
h
_
,
k
_
,
l
_
}
/
;
h
k
0
/
;
E
v
e
n
Q
[
l
]
}
,
M
u
l
t
i
p
l
i
c
i
t
y
2
,
W
y
c
k
o
f
f
L
e
t
t
e
r
b
,
S
i
t
e
S
y
m
m
e
t
r
y
3
.
.
,
C
o
o
r
d
i
n
a
t
e
s
1
3
,
2
3
,
z
,
2
3
,
1
3
,
1
2
+
z
,
R
e
f
l
e
c
t
i
o
n
C
o
n
d
i
t
i
o
n
s
{
{
h
_
,
k
_
,
l
_
}
/
;
T
r
u
e
/
;
E
v
e
n
Q
[
l
]
|
|
M
o
d
[
h
-
k
,
3
]
1
|
|
M
o
d
[
h
-
k
,
3
]
2
}
,
M
u
l
t
i
p
l
i
c
i
t
y
2
,
W
y
c
k
o
f
f
L
e
t
t
e
r
a
,
S
i
t
e
S
y
m
m
e
t
r
y
3
.
.
,
C
o
o
r
d
i
n
a
t
e
s
{
0
,
0
,
z
}
,
0
,
0
,
1
2
+
z
,
R
e
f
l
e
c
t
i
o
n
C
o
n
d
i
t
i
o
n
s
{
{
h
_
,
k
_
,
l
_
}
/
;
T
r
u
e
/
;
E
v
e
n
Q
[
l
]
}
Extract the space group number and Laue class of
A
e
a
a
:
I
n
[
1
]
:
=
G
e
t
S
y
m
m
e
t
r
y
D
a
t
a
[
"
A
e
a
a
"
,
#
]
&
/
@
{
"
S
p
a
c
e
G
r
o
u
p
N
u
m
b
e
r
"
,
"
L
a
u
e
C
l
a
s
s
"
}
O
u
t
[
1
]
=
{
6
8
,
m
m
m
}
Is it the main entry of this space group?
I
n
[
2
]
:
=
G
e
t
S
y
m
m
e
t
r
y
D
a
t
a
[
"
A
e
a
a
"
,
"
M
a
i
n
E
n
t
r
y
Q
"
]
O
u
t
[
2
]
=
F
a
l
s
e
Find the symbol of the corresponding main entry:
I
n
[
3
]
:
=
G
e
t
S
y
m
m
e
t
r
y
D
a
t
a
[
"
A
e
a
a
"
,
"
S
y
m
b
o
l
"
,
"
U
s
e
M
a
i
n
E
n
t
r
y
"
T
r
u
e
]
O
u
t
[
3
]
=
C
c
c
e
S
c
o
p
e
(
2
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
I
m
p
o
r
t
C
r
y
s
t
a
l
D
a
t
a
▪
U
n
i
t
C
e
l
l
T
r
a
n
s
f
o
r
m
a
t
i
o
n
▪
S
y
s
t
e
m
a
t
i
c
A
b
s
e
n
t
Q
▪
S
y
m
m
e
t
r
y
E
q
u
i
v
a
l
e
n
t
P
o
s
i
t
i
o
n
s
▪
S
t
r
u
c
t
u
r
e
F
a
c
t
o
r
▪
$
G
r
o
u
p
S
y
m
b
o
l
R
e
d
i
r
e
c
t
▪
T
o
S
t
a
n
d
a
r
d
S
e
t
t
i
n
g
▪
$
C
r
y
s
t
a
l
D
a
t
a
▪
$
S
p
a
c
e
G
r
o
u
p
s
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
M
a
X
r
d
–
M
a
t
h
e
m
a
t
i
c
a
X
-
r
a
y
d
i
f
f
r
a
c
t
i
o
n
p
a
c
k
a
g
e
R
e
l
a
t
e
d
L
i
n
k
s
[
1
]
T
.
H
a
h
n
,
S
p
a
c
e
-
G
r
o
u
p
S
y
m
m
e
t
r
y
,
5
t
h
e
d
.
,
I
n
t
e
r
n
a
t
i
o
n
a
l
T
a
b
l
e
s
f
o
r
C
r
y
s
t
a
l
l
o
g
r
a
p
h
y
.
K
l
u
w
e
r
A
c
a
d
e
m
i
c
P
u
b
l
i
s
h
e
r
s
,
2
0
0
2
,
v
o
l
u
m
e
A
.
W
e
b
s
i
t
e
:
▪
h
t
t
p
:
/
/
i
t
.
i
u
c
r
.
o
r
g
/
A
/
.
"
"