Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MaXrd
Guides
MaXrd – Mathematica X-ray diffraction package
Tech Notes
Applying crystal data
Basic computations
Computations on reflections
Formulas in crystallography
Importing crystal data
Quick guide to conditions
References
Symmetry calculations
The association structure of crystallographic data
Using the rotation options
Symbols
AttenuationCoefficient
BraggAngle
ConstructDomains
CrystalDensity
CrystalFormulaUnits
CrystalPlot
DarwinWidth
DistortStructure
DomainPlot
EmbedStructure
ExpandCrystal
ExportCrystalData
ExtinctionLength
FindPixelClusters
GetAtomCoordinates
GetAtomicScatteringFactors
GetCrystalMetric
GetElements
GetLatticeParameters
GetLaueClass
GetScatteringCrossSections
GetSymmetryData
GetSymmetryOperations
ImportCrystalData
InputCheck
InterplanarSpacing
MergeDomains
MergeSymmetryEquivalentReflections
MillerNotationToList
MillerNotationToString
ReciprocalImageCheck
ReciprocalSpaceSimulation
ReflectionList
RelatedFunctionsGraph
ResetCrystalData
ResizeStructure
SimulateDiffractionPattern
StructureFactor
StructureFactorTable
SymmetryEquivalentPositions
SymmetryEquivalentReflections
SymmetryEquivalentReflectionsQ
SynthesiseStructure
SystematicAbsentQ
ToStandardSetting
TransformAtomicDisplacementParameters
UnitCellTransformation
$CrystalData
$GroupSymbolRedirect
$LaueClasses
$MaXrdPath
$MaXrdVersion
$PeriodicTable
$PointGroups
$SpaceGroups
$TransformationMatrices
Formulas in crystallography
M
e
t
r
i
c
R
e
c
i
p
r
o
c
a
l
s
p
a
c
e
T
r
a
n
s
f
o
r
m
a
t
i
o
n
s
U
n
i
t
c
o
n
v
e
r
s
i
o
n
s
I
n
t
e
r
p
l
a
n
a
r
s
p
a
c
i
n
g
S
c
a
t
t
e
r
i
n
g
The formulas are gathered from [
J
u
l
i
a
n
,
2
0
1
5
], [
G
i
a
c
o
v
a
z
z
o
,
1992
] and [
W
i
k
i
p
e
d
i
a
].
Metric
Basis vectors
a
,
b
,
c
Basis vectors in reciprocal space
*
a
,
*
b
,
*
c
Metric matrix
G
=
a
b
c
(
a
b
c
)
=
a
·
a
a
·
b
a
·
c
a
·
b
b
·
b
b
·
c
a
·
c
b
·
c
c
·
c
=
2
a
a
b
c
o
s
γ
a
c
c
o
s
β
a
b
c
o
s
γ
2
b
b
c
c
o
s
α
a
c
c
o
s
β
b
c
c
o
s
α
2
c
Metric matrix of reciprocal space (sometimes denoted by
H
)
*
G
=
-
1
G
Volume
V
=
d
e
t
G
Fractional coordinates (unitless)
x
,
y
,
z
Miller (or Laue) indices
h
,
k
,
l
Coordinate vector (in direct space)
r
=
r
(
x
,
y
,
z
)
=
x
a
+
y
b
+
z
c
Reciprocal lattice vector (
Q
,
O
H
,
G
or
*
r
h
k
l
is sometimes used instead of
H
)
H
=
H
h
k
l
=
H
(
h
,
k
,
l
)
=
h
*
a
+
k
*
b
+
l
*
c
H
=
H
h
k
l
≠
H
Node in reciprocal space/lattice
H
=
(
h
k
l
)
Coordinate matrix (unitless)
X
=
x
y
z
Magnitude of coordinate vector
r
r
=
T
X
G
X
Interatomic bond length
r
1
2
=
T
X
1
2
G
X
1
2
;
X
1
2
=
x
2
-
x
1
y
2
-
y
1
z
2
-
z
1
Interatomic bond angle (vertex at atom
1
)
c
o
s
θ
=
T
X
1
2
G
X
1
3
r
1
2
r
1
3
=
T
X
1
2
G
X
1
3
T
X
1
2
G
X
1
2
T
X
1
3
G
X
1
3
Density
ρ
=
Z
M
V
N
A
;
Z
=
f
o
r
m
u
l
a
u
n
i
t
s
p
e
r
u
n
i
t
c
e
l
l
M
=
a
t
o
m
i
c
m
a
s
s
o
f
o
n
e
u
n
i
t
V
=
u
n
i
t
c
e
l
l
v
o
l
u
m
e
N
A
=
A
v
o
g
a
d
r
o
'
s
n
u
m
b
e
r
Transformations
Transformation matrix
P
Transforming basis vectors
(
a
2
b
2
c
2
)
=
(
a
1
b
1
c
1
)
P
Transforming coordinates
X
2
=
-
1
P
X
1
(
X
1
=
P
X
2
)
Transforming metric matrices
G
2
=
T
P
G
1
P
Volume relation
d
e
t
P
=
V
2
V
1
Conversion from crystal coordinates to Cartesian coordinates (note: this is stored as
$
T
r
a
n
s
f
o
r
m
a
t
i
o
n
M
a
t
r
i
c
e
s
[
"
C
r
y
s
t
a
l
l
o
g
r
a
p
h
i
c
T
o
C
a
r
t
e
s
i
a
n
"
]
)
P
C
=
a
b
c
o
s
γ
c
c
o
s
β
0
b
s
i
n
γ
c
(
c
o
s
α
-
c
o
s
γ
c
o
s
β
)
s
i
n
γ
0
0
c
1
-
2
c
o
s
β
-
2
(
c
o
s
α
-
c
o
s
γ
c
o
s
β
)
2
s
i
n
γ
=
a
b
c
o
s
γ
c
c
o
s
β
0
b
s
i
n
γ
c
C
1
0
0
c
C
2
,
C
1
=
c
o
s
α
-
c
o
s
γ
c
o
s
β
s
i
n
γ
,
C
2
=
1
-
2
c
o
s
β
-
2
C
1
Interplanar spacing
From correspondence between crystallographic planes and reciprocal lattice points:
d
h
k
l
=
1
H
=
1
H
*
G
T
H
Cubic
1
2
d
h
k
l
=
2
h
+
2
k
+
2
l
2
a
Tetragonal
1
2
d
h
k
l
=
2
h
+
2
k
2
a
+
2
l
2
c
Orthorhombic
1
2
d
h
k
l
=
2
h
2
a
+
2
k
2
b
+
2
l
2
c
Hexagonal and trigonal (
P
centring)
1
2
d
h
k
l
=
4
3
2
a
(
2
h
+
2
k
+
h
k
)
+
2
l
2
c
Rhombohedral (trigonal
R
centring)
1
2
d
h
k
l
=
1
2
a
(
2
h
+
2
k
+
2
l
)
2
s
i
n
α
+
2
(
h
k
+
h
l
+
k
l
)
(
2
c
o
s
α
-
c
o
s
α
)
1
+
2
3
c
o
s
α
-
3
2
c
o
s
α
Monoclinic
1
2
d
h
k
l
=
2
h
2
a
2
s
i
n
β
+
2
k
2
b
+
2
l
2
c
2
s
i
n
β
-
2
h
l
c
o
s
β
a
c
2
s
i
n
β
=
2
h
2
a
+
2
k
2
s
i
n
β
2
b
+
2
l
2
c
-
2
h
l
c
o
s
β
a
c
2
c
s
c
β
Triclinic
Reciprocal space
Definition of the reciprocal lattice
Accordingly relations
Angles in reciprocal space
Volume relations
Unit conversions
Scattering
Common absorption edges