Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lommel function
ResourceFunction["LommelS"][μ,ν,z] gives the Lommel function Sμ,ν(z). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot S-1/4,2/3(x) over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Series expansion at the origin:
| In[3]:= |
| Out[3]= |
Evaluate for complex arguments:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
LommelS threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Simple exact values are generated automatically:
| In[8]:= |
| Out[8]= |
Verify recurrence relations satisfied by LommelS:
| In[9]:= | ![]() |
| Out[9]= |
| In[10]:= | ![]() |
| Out[10]= |
Express the derivative of LommelS in terms of LommelS:
| In[11]:= | ![]() |
| Out[11]= |
| In[12]:= | ![]() |
| Out[12]= |
| In[13]:= | ![]() |
| Out[13]= |
Indefinite integrals of the Bessel functions BesselJ and BesselY multiplied by a power function can be expressed in terms of Bessel functions and LommelS:
| In[14]:= | ![]() |
| Out[14]= |
| In[15]:= | ![]() |
| Out[15]= |
Express the Anger and Weber functions in terms of LommelS:
| In[16]:= | ![]() |
| Out[16]= |
| In[17]:= | ![]() |
| Out[17]= |
The associated Anger–Weber function AngerWeberA can be expressed in terms of LommelS:
| In[18]:= | ![]() |
| Out[18]= |
The Neumann polynomial NeumannO can be expressed in terms of LommelS:
| In[19]:= | ![]() |
| Out[19]= |
The Schläfli polynomial SchlaefliS can be expressed in terms of LommelS:
| In[20]:= | ![]() |
| Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License