Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Schläfli polynomial
ResourceFunction["SchlaefliS"][n,z] gives the Schläfli polynomial Sn(z) . |

Evaluate numerically:
| In[1]:= |
| Out[1]= |
Evaluate Schläfli polynomials for various orders:
| In[2]:= |
| Out[2]= |
Plot with respect to z:
| In[3]:= |
| Out[3]= | ![]() |
Evaluate for complex arguments:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
SchlaefliS threads elementwise over lists:
| In[7]:= |
| Out[7]= |
The Schläfli polynomial can be expressed in terms of the Neumann polynomial NeumannO:
| In[8]:= | ![]() |
| Out[8]= |
The Schläfli polynomial can be expressed in terms of the Lommel function LommelS:
| In[9]:= | ![]() |
| Out[9]= |
Verify a differential equation for the Schläfli polynomial:
| In[10]:= | ![]() |
| Out[10]= |
Verify a recurrence identity for the Schläfli polynomial:
| In[11]:= | ![]() |
| Out[11]= |
Verify Graf's formula for the Schläfli polynomial:
| In[12]:= | ![]() |
| Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License