Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Schläfli polynomial
ResourceFunction["SchlaefliS"][n,z] gives the Schläfli polynomial Sn(z) . |
Evaluate numerically:
In[1]:= |
Out[1]= |
Evaluate Schläfli polynomials for various orders:
In[2]:= |
Out[2]= |
Plot with respect to z:
In[3]:= |
Out[3]= |
Evaluate for complex arguments:
In[4]:= |
Out[4]= |
Evaluate to high precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
SchlaefliS threads elementwise over lists:
In[7]:= |
Out[7]= |
The Schläfli polynomial can be expressed in terms of the Neumann polynomial NeumannO:
In[8]:= |
Out[8]= |
The Schläfli polynomial can be expressed in terms of the Lommel function LommelS:
In[9]:= |
Out[9]= |
Verify a differential equation for the Schläfli polynomial:
In[10]:= |
Out[10]= |
Verify a recurrence identity for the Schläfli polynomial:
In[11]:= |
Out[11]= |
Verify Graf's formula for the Schläfli polynomial:
In[12]:= |
Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License