Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lommel function
ResourceFunction["LommelS"][μ,ν,z] gives the Lommel function Sμ,ν(z). |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot S-1/4,2/3(x) over a subset of the reals:
In[2]:= | ![]() |
Out[2]= | ![]() |
Series expansion at the origin:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
LommelS threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Simple exact values are generated automatically:
In[8]:= | ![]() |
Out[8]= | ![]() |
Verify recurrence relations satisfied by LommelS:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Express the derivative of LommelS in terms of LommelS:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Indefinite integrals of the Bessel functions BesselJ and BesselY multiplied by a power function can be expressed in terms of Bessel functions and LommelS:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Express the Anger and Weber functions in terms of LommelS:
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
The associated Anger–Weber function AngerWeberA can be expressed in terms of LommelS:
In[18]:= | ![]() |
Out[18]= | ![]() |
The Neumann polynomial NeumannO can be expressed in terms of LommelS:
In[19]:= | ![]() |
Out[19]= | ![]() |
The Schläfli polynomial SchlaefliS can be expressed in terms of LommelS:
In[20]:= | ![]() |
Out[20]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License