Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lommel function
ResourceFunction["LommelS"][μ,ν,z] gives the Lommel function Sμ,ν(z). |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot S-1/4,2/3(x) over a subset of the reals:
In[2]:= |
Out[2]= |
Series expansion at the origin:
In[3]:= |
Out[3]= |
Evaluate for complex arguments:
In[4]:= |
Out[4]= |
Evaluate to high precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
LommelS threads elementwise over lists:
In[7]:= |
Out[7]= |
Simple exact values are generated automatically:
In[8]:= |
Out[8]= |
Verify recurrence relations satisfied by LommelS:
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
Express the derivative of LommelS in terms of LommelS:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
Indefinite integrals of the Bessel functions BesselJ and BesselY multiplied by a power function can be expressed in terms of Bessel functions and LommelS:
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
Express the Anger and Weber functions in terms of LommelS:
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
The associated Anger–Weber function AngerWeberA can be expressed in terms of LommelS:
In[18]:= |
Out[18]= |
The Neumann polynomial NeumannO can be expressed in terms of LommelS:
In[19]:= |
Out[19]= |
The Schläfli polynomial SchlaefliS can be expressed in terms of LommelS:
In[20]:= |
Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License