Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Tridiagonalize an antisymmetric (skew-symmetric) matrix using the Parlett-Reid algorithm
ResourceFunction["SkewLTLDecomposition"][m] gives the Parlett–Reid decomposition of the skew-symmetric matrix m. |
The Parlett–Reid decomposition of a skew-symmetric matrix:
In[1]:= |
Out[1]= |
In[2]:= |
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
The Parlett–Reid decomposition of a real antisymmetric matrix:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Decomposing of a complex antisymmetric matrix:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
SkewLTLDecomposition applied to a symbolic antisymmetric matrix:
In[9]:= |
Out[9]= |
Compute the Pfaffian of an antisymmetric matrix by reducing it to the tridiagonal form:
In[10]:= |
Out[10]= |
In[11]:= |
In[12]:= |
Out[12]= |
In[13]:= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
In the result of {l,t,p}=SkewLTLDecomposition[m], the matrix l is lower-triangular with a unit diagonal and t is tridiagonal:
In[16]:= |
In[17]:= |
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
The product is given by p.m.pT:
In[20]:= |
Out[20]= |
The resource function SkewTridiagonalDecomposition also produces a tridiagonal matrix t with the same Pfaffian, possibly up to the sign:
In[21]:= |
In[22]:= |
In[23]:= |
Out[23]= |
In[24]:= |
In[25]:= |
Out[25]= |
Use the resource function Pfaffian to make the comparison:
In[26]:= |
Out[26]= |
This work is licensed under a Creative Commons Attribution 4.0 International License