Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Pfaffian of an antisymmetric (skew-symmetric) matrix
ResourceFunction["Pfaffian"][m] gives the Pfaffian of a skew-symmetric matrix m. |
"ParlettReid" | Parlett–Reid tridiagonalization |
"Householder" | Householder tridiagonalization |
"Hessenberg" | Hessenberg decomposition |
"Pauli" | uses the second Pauli matrix |
"Det" | uses the built-in Det |
Pfaffian of an antisymmetric matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
The Pfaffian of a real antisymmetric matrix:
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
A complex matrix:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
A symbolic matrix:
In[6]:= | ![]() |
Out[6]= | ![]() |
Methods applicable to real matrices:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Methods applicable to complex matrices:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Methods applicable to symbolic matrices:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
The Pfaffian of an antisymmetric matrix of odd dimension is zero:
In[16]:= | ![]() |
Out[16]= | ![]() |
For a 2n×2n skew-symmetric matrix m, the Pfaffian of the matrix transpose mT is equal to (-1)nPfaffian[m]:
In[17]:= | ![]() |
In[18]:= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
For such matrices, the Pfaffian of λm is equal to λnPfaffian[m]:
In[21]:= | ![]() |
Out[21]= | ![]() |
Also, for such matrices, the square of the Pfaffian is equal to the determinant of the matrix:
In[22]:= | ![]() |
Out[22]= | ![]() |
For a 2n×2n skew-symmetric matrix m and an arbitrary 2n×2n matrix x, Pfaffian[x.m.xT]⩵Det[x]*Pfaffian[m]:
In[23]:= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
In[26]:= | ![]() |
Out[26]= | ![]() |
The Pfaffian of a 2n×2n skew-symmetric block diagonal matrix is the product of its non-zero superdiagonal values:
In[27]:= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
In[29]:= | ![]() |
Out[29]= | ![]() |
The Pfaffian of a 2n×2n skew-symmetric tridiagonal matrix is the product of the entries at odd positions on the superdiagonal:
In[30]:= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
In[32]:= | ![]() |
Out[32]= | ![]() |
Reducing an antisymmetric matrix to its tridiagonal form gives a numerically stable way to compute the Pfaffian from the superdiagonal values:
In[33]:= | ![]() |
In[34]:= | ![]() |
Out[34]= | ![]() |
Tridiagonalize using the resource function SkewLTLDecomposition:
In[35]:= | ![]() |
In[36]:= | ![]() |
Out[36]= | ![]() |
In[37]:= | ![]() |
Out[37]= | ![]() |
Using the resource function SkewTridiagonalDecomposition:
In[38]:= | ![]() |
In[39]:= | ![]() |
Out[39]= | ![]() |
In[40]:= | ![]() |
Out[40]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License