Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Pfaffian of an antisymmetric (skew-symmetric) matrix
ResourceFunction["Pfaffian"][m] gives the Pfaffian of a skew-symmetric matrix m. |
"ParlettReid" | Parlett–Reid tridiagonalization |
"Householder" | Householder tridiagonalization |
"Hessenberg" | Hessenberg decomposition |
"Pauli" | uses the second Pauli matrix |
"Det" | uses the built-in Det |
Pfaffian of an antisymmetric matrix:
In[1]:= |
Out[1]= |
The Pfaffian of a real antisymmetric matrix:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
A complex matrix:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
A symbolic matrix:
In[6]:= |
Out[6]= |
Methods applicable to real matrices:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Methods applicable to complex matrices:
In[10]:= |
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
Methods applicable to symbolic matrices:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
The Pfaffian of an antisymmetric matrix of odd dimension is zero:
In[16]:= |
Out[16]= |
For a 2n×2n skew-symmetric matrix m, the Pfaffian of the matrix transpose mT is equal to (-1)nPfaffian[m]:
In[17]:= |
In[18]:= |
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
For such matrices, the Pfaffian of λm is equal to λnPfaffian[m]:
In[21]:= |
Out[21]= |
Also, for such matrices, the square of the Pfaffian is equal to the determinant of the matrix:
In[22]:= |
Out[22]= |
For a 2n×2n skew-symmetric matrix m and an arbitrary 2n×2n matrix x, Pfaffian[x.m.xT]⩵Det[x]*Pfaffian[m]:
In[23]:= |
In[24]:= |
Out[24]= |
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
The Pfaffian of a 2n×2n skew-symmetric block diagonal matrix is the product of its non-zero superdiagonal values:
In[27]:= |
In[28]:= |
Out[28]= |
In[29]:= |
Out[29]= |
The Pfaffian of a 2n×2n skew-symmetric tridiagonal matrix is the product of the entries at odd positions on the superdiagonal:
In[30]:= |
In[31]:= |
Out[31]= |
In[32]:= |
Out[32]= |
Reducing an antisymmetric matrix to its tridiagonal form gives a numerically stable way to compute the Pfaffian from the superdiagonal values:
In[33]:= |
In[34]:= |
Out[34]= |
Tridiagonalize using the resource function SkewLTLDecomposition:
In[35]:= |
In[36]:= |
Out[36]= |
In[37]:= |
Out[37]= |
Using the resource function SkewTridiagonalDecomposition:
In[38]:= |
In[39]:= |
Out[39]= |
In[40]:= |
Out[40]= |
This work is licensed under a Creative Commons Attribution 4.0 International License