Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Tridiagonalize an antisymmetric (skew-symmetric) matrix using the Parlett-Reid algorithm
ResourceFunction["SkewLTLDecomposition"][m] gives the Parlett–Reid decomposition of the skew-symmetric matrix m. |
The Parlett–Reid decomposition of a skew-symmetric matrix:
| In[1]:= | ![]() |
| Out[1]= |
| In[2]:= |
| In[3]:= |
| Out[3]= | ![]() |
| In[4]:= |
| Out[4]= |
The Parlett–Reid decomposition of a real antisymmetric matrix:
| In[5]:= |
| Out[5]= | ![]() |
| In[6]:= |
| Out[6]= | ![]() |
Decomposing of a complex antisymmetric matrix:
| In[7]:= |
| Out[7]= | ![]() |
| In[8]:= |
| Out[8]= | ![]() |
SkewLTLDecomposition applied to a symbolic antisymmetric matrix:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Compute the Pfaffian of an antisymmetric matrix by reducing it to the tridiagonal form:
| In[10]:= |
| Out[10]= | ![]() |
| In[11]:= |
| In[12]:= |
| Out[12]= | ![]() |
| In[13]:= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
In the result of {l,t,p}=SkewLTLDecomposition[m], the matrix l is lower-triangular with a unit diagonal and t is tridiagonal:
| In[16]:= |
| In[17]:= |
| In[18]:= |
| Out[18]= | ![]() |
| In[19]:= |
| Out[19]= | ![]() |
The product
is given by p.m.pT:
| In[20]:= |
| Out[20]= |
The resource function SkewTridiagonalDecomposition also produces a tridiagonal matrix t with the same Pfaffian, possibly up to the sign:
| In[21]:= |
| In[22]:= |
| In[23]:= |
| Out[23]= | ![]() |
| In[24]:= |
| In[25]:= |
| Out[25]= | ![]() |
Use the resource function Pfaffian to make the comparison:
| In[26]:= |
| Out[26]= |
This work is licensed under a Creative Commons Attribution 4.0 International License