Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Tridiagonalize an antisymmetric (skew-symmetric) matrix using the Parlett-Reid algorithm
ResourceFunction["SkewLTLDecomposition"][m] gives the Parlett–Reid decomposition of the skew-symmetric matrix m. |
The Parlett–Reid decomposition of a skew-symmetric matrix:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
The Parlett–Reid decomposition of a real antisymmetric matrix:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Decomposing of a complex antisymmetric matrix:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
SkewLTLDecomposition applied to a symbolic antisymmetric matrix:
In[9]:= | ![]() |
Out[9]= | ![]() |
Compute the Pfaffian of an antisymmetric matrix by reducing it to the tridiagonal form:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
In the result of {l,t,p}=SkewLTLDecomposition[m], the matrix l is lower-triangular with a unit diagonal and t is tridiagonal:
In[16]:= | ![]() |
In[17]:= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
The product is given by p.m.pT:
In[20]:= | ![]() |
Out[20]= | ![]() |
The resource function SkewTridiagonalDecomposition also produces a tridiagonal matrix t with the same Pfaffian, possibly up to the sign:
In[21]:= | ![]() |
In[22]:= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
Use the resource function Pfaffian to make the comparison:
In[26]:= | ![]() |
Out[26]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License