Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Schläfli polynomial
ResourceFunction["SchlaefliS"][n,z] gives the Schläfli polynomial Sn(z) . |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Evaluate Schläfli polynomials for various orders:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot with respect to z:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
SchlaefliS threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
The Schläfli polynomial can be expressed in terms of the Neumann polynomial NeumannO:
In[8]:= | ![]() |
Out[8]= | ![]() |
The Schläfli polynomial can be expressed in terms of the Lommel function LommelS:
In[9]:= | ![]() |
Out[9]= | ![]() |
Verify a differential equation for the Schläfli polynomial:
In[10]:= | ![]() |
Out[10]= | ![]() |
Verify a recurrence identity for the Schläfli polynomial:
In[11]:= | ![]() |
Out[11]= | ![]() |
Verify Graf's formula for the Schläfli polynomial:
In[12]:= | ![]() |
Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License