Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the tangent vector of a curve
ResourceFunction["TangentVector"][c,t] computes the tangent vector of a curve c parametrized by t. |
Calculate the value of the tangent vector of a curve:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot a set of tangent vectors:
In[2]:= | ![]() |
Out[2]= | ![]() |
The tangent vector of a figure-eight curve:
In[3]:= | ![]() |
Out[3]= | ![]() |
Define a helix:
In[4]:= | ![]() |
Out[4]= | ![]() |
The tangent developable surface of a curve is generated by the tangent vector field of the curve. It can be calculated using the resource function TangentDevelopableSurface:
In[5]:= | ![]() |
Out[5]= | ![]() |
This is alternatively formed by adding a multiple of the tangent vector to the curve:
In[6]:= | ![]() |
Out[6]= | ![]() |
Plot the surface:
In[7]:= | ![]() |
Out[7]= | ![]() |
A unit speed helix:
In[8]:= | ![]() |
The curvature, via the resource function Curvature:
In[9]:= | ![]() |
Out[9]= | ![]() |
The tangent vector:
In[10]:= | ![]() |
Out[10]= | ![]() |
The derivative of the tangent vector:
In[11]:= | ![]() |
Out[11]= | ![]() |
The normal vector, via the resource function NormalVector:
In[12]:= | ![]() |
Out[12]= | ![]() |
The curvature times the normal vector is equal to the derivative of the tangent vector:
In[13]:= | ![]() |
Out[13]= | ![]() |
In relation with the Frenet-Serret system, the tangent vector is the first entry of the second List:
In[14]:= | ![]() |
Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License