Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the Steiner circumellipse of a 2D triangle
ResourceFunction["SteinerCircumellipse"][{p1,p2,p3}] returns an Ellipsoid representing the Steiner circumellipse of the triangle defined by vertices p1,p2 and p3. | |
ResourceFunction["SteinerCircumellipse"][{p1,p2,p3},property] gives the value of the specified property. |
| "Ellipsoid" | Ellipsoid representing the circumellipse |
| "Parametric" | parametric equation for the circumellipse as a pure function |
| "Implicit" | implicit Cartesian equation for the circumellipse as a pure function |
Show a triangle together with its Steiner circumellipse:
| In[1]:= | ![]() |
| Out[1]= | ![]() |
A triangle:
| In[2]:= |
| Out[2]= | ![]() |
Generate the parametric equation of the triangle's Steiner circumellipse:
| In[3]:= |
| Out[3]= |
Plot the parametric equation along with the triangle:
| In[4]:= |
| Out[4]= | ![]() |
Generate the implicit equation of the triangle's Steiner circumellipse:
| In[5]:= |
| Out[5]= |
Plot the implicit equation along with the triangle:
| In[6]:= |
| Out[6]= | ![]() |
Use the resource function EllipseProperties to generate properties of the circumellipse:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
The area of the Steiner circumellipse is a constant multiple of the area of the original triangle:
| In[8]:= | ![]() |
| Out[8]= |
The Steiner inellipse is the Steiner circumellipse scaled by a factor of 1/2. It passes through the midpoints of the triangle's sides:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License