Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the Steiner circumellipse of a 2D triangle
ResourceFunction["SteinerCircumellipse"][{p1,p2,p3}] returns an Ellipsoid representing the Steiner circumellipse of the triangle defined by vertices p1,p2 and p3. | |
ResourceFunction["SteinerCircumellipse"][{p1,p2,p3},property] gives the value of the specified property. |
"Ellipsoid" | Ellipsoid representing the circumellipse |
"Parametric" | parametric equation for the circumellipse as a pure function |
"Implicit" | implicit Cartesian equation for the circumellipse as a pure function |
Show a triangle together with its Steiner circumellipse:
In[1]:= |
Out[1]= |
A triangle:
In[2]:= |
Out[2]= |
Generate the parametric equation of the triangle's Steiner circumellipse:
In[3]:= |
Out[3]= |
Plot the parametric equation along with the triangle:
In[4]:= |
Out[4]= |
Generate the implicit equation of the triangle's Steiner circumellipse:
In[5]:= |
Out[5]= |
Plot the implicit equation along with the triangle:
In[6]:= |
Out[6]= |
Use the resource function EllipseProperties to generate properties of the circumellipse:
In[7]:= |
Out[7]= |
The area of the Steiner circumellipse is a constant multiple of the area of the original triangle:
In[8]:= |
Out[8]= |
The Steiner inellipse is the Steiner circumellipse scaled by a factor of 1/2. It passes through the midpoints of the triangle's sides:
In[9]:= |
Out[9]= |
This work is licensed under a Creative Commons Attribution 4.0 International License