Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a normal texture from height data
ResourceFunction["NormalTexture"][data] gives the normal texture for the height data data. | |
ResourceFunction["NormalTexture"][data, s] gives the normal texture with relative strength s. | |
ResourceFunction["NormalTexture"][data, s, r] uses a kernel radius of r. | |
ResourceFunction["NormalTexture"][data, {sx, sy}, {rx, ry}] uses separate strengths and radii for the horizontal and vertical directions. |
"Sobel" | binomial generalizations of the Sobel edge-detection kernels |
"Gaussian" | standardized Gaussian derivative kernel |
"ShenCastan" | first-order derivatives of exponentials |
{0, 1} | the {x,y,z} values of each normal are rescaled from {-1,1} to {0,1} |
{-1, 1} | no rescaling is applied |
{min, max} | values are rescaled from {-1, 1} to {min,max} |
Normal texture from a grayscale image:
In[1]:= |
![]() |
Out[1]= |
![]() |
Normal texture from array data:
In[2]:= |
![]() |
Out[2]= |
![]() |
Normal texture from a height map (CC0 source):
In[3]:= |
![]() |
Out[3]= |
![]() |
Apply the normal texture to a polygon (MaterialShading requires Wolfram Language 12.3):
In[4]:= |
![]() |
Out[4]= |
![]() |
Use elevation data of real world locations:
In[5]:= |
![]() |
Out[5]= |
![]() |
Use textures:
In[6]:= |
![]() |
Out[6]= |
![]() |
In[7]:= |
![]() |
Out[7]= |
![]() |
Use graphics:
In[8]:= |
![]() |
Out[8]= |
![]() |
In[9]:= |
![]() |
Out[9]= |
![]() |
Create normal textures with varying strengths:
In[10]:= |
![]() |
Out[10]= |
![]() |
Use different vertical and horizontal strengths:
In[11]:= |
![]() |
Out[11]= |
![]() |
Negative strength values reverse the normal direction:
In[12]:= |
![]() |
Out[12]= |
![]() |
Create normal textures using increasing radii:
In[13]:= |
![]() |
Out[13]= |
![]() |
Use different vertical and horizontal radii:
In[14]:= |
![]() |
Out[14]= |
![]() |
Compute the horizontal and vertical derivatives using the default Sobel method:
In[15]:= |
![]() |
Out[15]= |
![]() |
Use the Gaussian method:
In[16]:= |
![]() |
Out[16]= |
![]() |
Use custom kernels for computing the derivatives:
In[17]:= |
![]() |
Out[17]= |
![]() |
Compare different methods with increasing kernel radii:
In[18]:= |
![]() |
Out[18]= |
![]() |
By default, a "Fixed" padding is used when convolving the input image:
In[19]:= |
![]() |
Out[19]= |
![]() |
Pad with one:
In[20]:= |
![]() |
Out[20]= |
![]() |
No padding results in a smaller image:
In[21]:= |
![]() |
Out[21]= |
![]() |
By default, the channels in the output are rescaled to be between 0 and 1:
In[22]:= |
![]() |
Out[22]= |
![]() |
Use the range -1 to 1 to leave the normal vectors unscaled:
In[23]:= |
![]() |
Out[23]= |
![]() |
In[24]:= |
![]() |
Out[24]= |
![]() |
NormalTexture produces normal textures compatible with MaterialShading (requires Wolfram Language 12.3):
In[25]:= |
![]() |
Out[25]= |
![]() |
The red and green channels of the normal texture correspond to the horizontal and vertical derivatives of the input image:
In[26]:= |
![]() |
Out[26]= |
![]() |
In[27]:= |
![]() |
Out[27]= |
![]() |
In[28]:= |
![]() |
Out[28]= |
![]() |
NormalTexture calculates derivatives similarly to GradientFilter:
In[29]:= |
![]() |
Out[29]= |
![]() |
By default, the components of each normal vector are rescaled, causing them to no longer be unit length vectors:
In[30]:= |
![]() |
Out[30]= |
![]() |
Use an output range of -1 to 1 to leave the normal vectors unscaled and unit length:
In[31]:= |
![]() |
Out[31]= |
![]() |
Create a normal texture for the Earth:
In[32]:= |
![]() |
Out[32]= |
![]() |
Apply it to the unit sphere to simulate Earth's terrain (MaterialShading requires Wolfram Language 12.3):
In[33]:= |
![]() |
Out[33]= |
![]() |
Visualize the normal directions across the implied surface:
In[34]:= |
![]() |
Out[34]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License