Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make an inside-outside plot of a function
ResourceFunction["InsideOutsidePlot"][f,z] generates an inside-outside plot of the function f depending on complex argument z. | |
ResourceFunction["InsideOutsidePlot"][f,{x,y}] generates an inside-outside plot of the two-variable function f. |
| AspectRatio | Automatic | ratio of height to width |
| Frame | False | whether to put a frame around the plot |
| "InversionCircleStyle" | Automatic | style specifications for the inversion circle |
| "InversionRadius" | 1 | radius of the inversion circle |
| ScalingFunctions | LogisticSigmoid | scaling function applied to the function values |
Inside-outside plot of
:
| In[1]:= |
| Out[1]= | ![]() |
Inside-outside plot of a bivariate function:
| In[2]:= |
| Out[2]= | ![]() |
Explicitly specify a color function:
| In[3]:= |
| Out[3]= | ![]() |
| In[4]:= |
| Out[4]= | ![]() |
Use a named color gradient:
| In[5]:= |
| Out[5]= | ![]() |
Change the style of the inversion circle:
| In[6]:= |
| Out[6]= | ![]() |
Compare inside-outside plots with different inversion radii:
| In[7]:= |
| Out[7]= | ![]() |
Use different scaling functions:
| In[8]:= |
| Out[8]= | ![]() |
Inside-outside plot of a rational function:
| In[9]:= |
| Out[9]= | ![]() |
Visualize a partial sum of "Zagier's strange function":
| In[10]:= |
| Out[10]= | ![]() |
InsideOutsidePlot[f[z],z] is equivalent to InsideOutsidePlot[f[x+Iy],{x,y}]:
| In[11]:= |
| Out[11]= | ![]() |
Inside-outside plot of a doubly-periodic function:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
Inside-outside plot of a Blaschke product:
| In[13]:= | ![]() |
| Out[13]= | ![]() |
Inside-outside plot of a random superposition of waves:
| In[14]:= | ![]() |
| Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License