Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make an inside-outside plot of a function
ResourceFunction["InsideOutsidePlot"][f,z] generates an inside-outside plot of the function f depending on complex argument z. | |
ResourceFunction["InsideOutsidePlot"][f,{x,y}] generates an inside-outside plot of the two-variable function f. |
AspectRatio | Automatic | ratio of height to width |
Frame | False | whether to put a frame around the plot |
"InversionCircleStyle" | Automatic | style specifications for the inversion circle |
"InversionRadius" | 1 | radius of the inversion circle |
ScalingFunctions | LogisticSigmoid | scaling function applied to the function values |
Inside-outside plot of :
In[1]:= |
Out[1]= |
Inside-outside plot of a bivariate function:
In[2]:= |
Out[2]= |
Explicitly specify a color function:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Use a named color gradient:
In[5]:= |
Out[5]= |
Change the style of the inversion circle:
In[6]:= |
Out[6]= |
Compare inside-outside plots with different inversion radii:
In[7]:= |
Out[7]= |
Use different scaling functions:
In[8]:= |
Out[8]= |
Inside-outside plot of a rational function:
In[9]:= |
Out[9]= |
Visualize a partial sum of "Zagier's strange function":
In[10]:= |
Out[10]= |
InsideOutsidePlot[f[z],z] is equivalent to InsideOutsidePlot[f[x+Iy],{x,y}]:
In[11]:= |
Out[11]= |
Inside-outside plot of a doubly-periodic function:
In[12]:= |
Out[12]= |
Inside-outside plot of a Blaschke product:
In[13]:= |
Out[13]= |
Inside-outside plot of a random superposition of waves:
In[14]:= |
Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License