Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Interpolate data using Akima's method or modifications of it
ResourceFunction["GeneralizedAkimaInterpolation"][{f1,f2,…}] constructs a cubic Hermite interpolation of the function values fi, assumed to correspond to x values 1, 2, …, using Akima's method. | |
ResourceFunction["GeneralizedAkimaInterpolation"][{{x1,f1},{x2,f2},…}] constructs a cubic Hermite interpolation of the function values fi corresponding to x values xi using Akima's method. |
| "AkimaClassic" | classical Akima method (1970) |
| "AkimaNew" | new Akima method (1991) |
| "ModifiedAkima" | Ionita's modification of Akima's method |
Construct an approximate function that interpolates the data:
| In[1]:= |
| Out[1]= |
Apply the function to find interpolated values:
| In[2]:= |
| Out[2]= |
Plot the interpolation function along with the original data:
| In[3]:= |
| Out[3]= | ![]() |
Interpolate between points at arbitrary x values:
| In[4]:= |
| In[5]:= |
| Out[5]= | ![]() |
Form an interpolation from data given as a TimeSeries:
| In[6]:= |
| In[7]:= |
| Out[7]= | ![]() |
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= | ![]() |
Compare different versions of Akima interpolation:
| In[10]:= |
| In[11]:= | ![]() |
| In[12]:= |
| Out[12]= | ![]() |
With PeriodicInterpolation→True, the data is interpreted as one period of a periodic function:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= | ![]() |
Setting Method→"AkimaClassic" in GeneralizedAkimaInterpolation gives results equivalent to the one from the resource function AkimaInterpolation:
| In[15]:= | ![]() |
| In[16]:= |
| Out[16]= | ![]() |
The interpolant returned by GeneralizedAkimaInterpolation is continuous up to its first derivative:
| In[17]:= |
| In[18]:= |
| Out[18]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License