Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a 3D curve into a parametrized tube
ResourceFunction["CurveTube"][c,t,r,θ] gives the parametrized circular tube with radius r and cross sectional angle θ centered on the curve c with parameter t. | |
ResourceFunction["CurveTube"][c1,c2,t,r,θ] gives the parametrized tube whose cross section is similar to c2 with effective radius r and cross sectional angle θ centered on the curve c1 with parameter t. |
Compute the parametrization for a helical tube:
| In[1]:= |
| Out[1]= |
Plot the tube:
| In[2]:= | ![]() |
| Out[2]= | ![]() |
Make a tube from a torus knot curve:
| In[3]:= |
| In[4]:= | ![]() |
| Out[4]= | ![]() |
Make a helix tube using a variant of a nephroid as a cross section:
| In[5]:= |
| In[6]:= |
| Out[6]= | ![]() |
| In[7]:= | ![]() |
| Out[7]= | ![]() |
| In[8]:= |
| Out[8]= | ![]() |
Take the normal and binormal vectors from the Frenet-Serret system for a helix:
| In[9]:= | ![]() |
| Out[9]= |
The parametrization for the curve tube for a helix is:
| In[10]:= | ![]() |
| Out[10]= |
This is the same as given by CurveTube:
| In[11]:= |
| Out[11]= |
Something similar can be done with Tube:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License