Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the binormal vector of a curve
ResourceFunction["BinormalVector"][c,t] computes the binormal vector of curve c parametrized by t. |
Consider the curve:
In[1]:= | ![]() |
Out[1]= | ![]() |
The binormal vector:
In[2]:= | ![]() |
Out[2]= | ![]() |
Use a helix:
In[3]:= | ![]() |
The binormal vector:
In[4]:= | ![]() |
Out[4]= | ![]() |
Calculate the normal vector using the resource function NormalVector:
In[5]:= | ![]() |
Out[5]= | ![]() |
The normal vector is the cross product of the binormal vector and the tangent vector. Check this using the previous computation along with the resource function TangentVector:
In[6]:= | ![]() |
Out[6]= | ![]() |
The binormal surface associated to a curve is generated by its binormal vector field. It can be computed with the resource function BinormalSurface:
In[7]:= | ![]() |
Out[7]= | ![]() |
Check this:
In[8]:= | ![]() |
Out[8]= | ![]() |
Combine the binormal surface with the helix curve:
In[9]:= | ![]() |
Out[9]= | ![]() |
Define a unit speed helix:
In[10]:= | ![]() |
Its binormal vector:
In[11]:= | ![]() |
Out[11]= | ![]() |
The derivative of the binormal vector:
In[12]:= | ![]() |
Out[12]= | ![]() |
The torsion, via the resource function CurveTorsion:
In[13]:= | ![]() |
Out[13]= | ![]() |
The normal vector, via the resource function NormalVector:
In[14]:= | ![]() |
Out[14]= | ![]() |
The torsion multiplied by the normal is the derivative of the binormal:
In[15]:= | ![]() |
Out[15]= | ![]() |
Using FrenetSerretSystem, the binormal vector is the last element of the second List:
In[16]:= | ![]() |
Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License