Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the curvature of a curve
ResourceFunction["Curvature"][c,t] computes the curvature of curve c parametrized by t. |
Plot the twisted cubic curve:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compute the curvature of the twisted cubic curve:
In[2]:= | ![]() |
Out[2]= | ![]() |
Compute the torsion with the resource function CurveTorsion:
In[3]:= | ![]() |
Out[3]= | ![]() |
Plot them:
In[4]:= | ![]() |
Out[4]= | ![]() |
For a plane curve, the curvature and torsion are the same:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Make a plot:
In[7]:= | ![]() |
Out[7]= | ![]() |
A curve that is qualitatively similar to a torus knot:
In[8]:= | ![]() |
Plot the knot:
In[9]:= | ![]() |
Out[9]= | ![]() |
Find the curvature:
In[10]:= | ![]() |
Out[10]= | ![]() |
Plot it:
In[11]:= | ![]() |
Out[11]= | ![]() |
Find the torsion with the resource function CurveTorsion:
In[12]:= | ![]() |
Out[12]= | ![]() |
Plot the torsion:
In[13]:= | ![]() |
Out[13]= | ![]() |
Define a loxodrome:
In[14]:= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Compute its curvature:
In[16]:= | ![]() |
Out[16]= | ![]() |
Plot the curvature:
In[17]:= | ![]() |
Out[17]= | ![]() |
A curve colored according to its curvature value:
In[18]:= | ![]() |
Out[18]= | ![]() |
A plane curve in polar coordinates:
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
Plot it:
In[21]:= | ![]() |
Out[21]= | ![]() |
The curvature:
In[22]:= | ![]() |
Out[22]= | ![]() |
The curvature of a circle:
In[23]:= | ![]() |
Out[23]= | ![]() |
The curvature of the Cornu spiral:
In[24]:= | ![]() |
Out[24]= | ![]() |
Define a conical spiral:
In[25]:= | ![]() |
Out[25]= | ![]() |
Compute the curvature:
In[26]:= | ![]() |
Out[26]= | ![]() |
Definition of a unit speed helix:
In[27]:= | ![]() |
The curvature:
In[28]:= | ![]() |
Out[28]= | ![]() |
The tangent vector, via the resource function TangentVector:
In[29]:= | ![]() |
Out[29]= | ![]() |
Derivative of the tangent vector:
In[30]:= | ![]() |
Out[30]= | ![]() |
The normal vector, via the resource function NormalVector:
In[31]:= | ![]() |
Out[31]= | ![]() |
The curvature times the normal vector is equal to the derivative of the tangent vector:
In[32]:= | ![]() |
Out[32]= | ![]() |
The torsion, via the resource function CurveTorsion:
In[33]:= | ![]() |
Out[33]= | ![]() |
In the Frenet–Serret system, the curvature and the torsion are the first two quantities:
In[34]:= | ![]() |
Out[34]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License