Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a 3D curve into a parametrized tube
ResourceFunction["CurveTube"][c,t,r,θ] gives the parametrized circular tube with radius r and cross sectional angle θ centered on the curve c with parameter t. | |
ResourceFunction["CurveTube"][c1,c2,t,r,θ] gives the parametrized tube whose cross section is similar to c2 with effective radius r and cross sectional angle θ centered on the curve c1 with parameter t. |
Compute the parametrization for a helical tube:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot the tube:
In[2]:= | ![]() |
Out[2]= | ![]() |
Make a tube from a torus knot curve:
In[3]:= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Make a helix tube using a variant of a nephroid as a cross section:
In[5]:= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
Take the normal and binormal vectors from the Frenet-Serret system for a helix:
In[9]:= | ![]() |
Out[9]= | ![]() |
The parametrization for the curve tube for a helix is:
In[10]:= | ![]() |
Out[10]= | ![]() |
This is the same as given by CurveTube:
In[11]:= | ![]() |
Out[11]= | ![]() |
Something similar can be done with Tube:
In[12]:= | ![]() |
Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License